ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 4, 2022
Revised March 3, 2023
Accepted March 11, 2023
Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, MSIT) (No. NRF-2018R1A5A1024127, NRF2020R1A2C2008141, and NRF-2021M3H4A6A01041234
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Physics-informed neural networks for learning fluid flows with symmetry

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea
jaewooknam@snu.ac.kr
Korean Journal of Chemical Engineering, September 2023, 40(9), 2119-2127(9), 10.1007/s11814-023-1420-4
downloadDownload PDF

Abstract

We suggest symmetric variational physics-informed neural networks (symmetric VPINN) to learn the symmetric fluid flow and physical properties of fluids from a limited set of data. Symmetric VPINN is based on the VPINN framework and guarantees the symmetry of the solutions by modifying the network architecture. The effectiveness of the symmetric VPINN is demonstrated by predicting the velocity profiles and power-law fluid properties in the Poiseuille flow of a parallel channel. Symmetric VPINN models robustly and accurately learn power-law fluid flow in both forward and inverse problems. We demonstrate that the symmetric VPINN can be particularly useful when the power-law index is small and the data are extremely limited. The modified network architecture in the symmetric VPINN guides the neural network towards an exact solution by reinforcing symmetry. We show that symmetric VPINN is effective in obtaining unknown physical properties in practical experiments where data are scarce, suggesting the possibility of introducing known conditions of the system directly into the network structure to improve the accuracy of the network.

References

1. M. Dissanayake and N. Phan-Thien, Commun. Numer. Methods Eng., 10(3), 195 (1994).
2. J. Berg and K. Nyström, Neurocomputing, 317, 28 (2018).
3. H. Sun, M. Hou, Y. Yang, T. Zhang, F. Weng and F. Han, Neural Process. Lett., 50(2), 1153 (2019).
4. S.F. Masri, A.G. Chassiakos and T.K. Caughey, J. Appl. Mech., 60(1), 123 (1993).
5. Y.-Y. Lin, J.-Y. Chang and C.-T. Lin, IEEE Trans. Neural Networks Learning Syst., 24(2), 310 (2012).
6. Y. Pan and J. Wang, IEEE Trans. Ind. Electron., 59(8), 3089 (2011).
7. B. Reyes, A. A. Howard, P. Perdikaris and A. M. Tartakovsky, Phys. Rev. Fluids, 6(7), 073301 (2021).
8. J. Taskinen and J. Yliruusi, Adv. Drug Deliv. Rev., 55(9), 1163 (2003).
9. R. Cang, H. Li, H. Yao, Y. Jiao and Y. Ren, Comput. Mater. Sci., 150, 212 (2018).
10. X. Jin, S. Cai, H. Li and G. E. Karniadakis, J. Comput. Phys., 426, 109951 (2021).
11. M. M. Almajid and M. O. Abu-Al-Saud, J. Pet. Sci. Eng., 208, 109205 (2022).
12. S. Cai, Z. Wang, S. Wang, P. Perdikaris and G. E. Karniadakis, J. Heat Transfer, 143(6), 060801 (2021).
13. X. Meng, Z. Li, D. Zhang and G. E. Karniadakis, Comput. Methods Appl. Mech. Eng., 370, 113250 (2020).
14. A. D. Jagtap, E. Kharazmi and G. E. Karniadakis, Comput. Methods Appl. Mech. Eng., 365, 113028 (2020).
15. A. D. Jagtap and G. E. Karniadakis, Extended Physics-informed Neural Networks (XPINNs): A Generalized Space-Time Domain
Decomposition based Deep Learning Framework for Nonlinear Partial Differential Equations., in: AAAI Spring Symposium: MLPS (2021).
16. E. Kharazmi, Z. Zhang and G. E. Karniadakis, Comput. Methods Appl. Mech. Eng., 374, 113547 (2021).
17. M. Yang and J. T. Foster, J. Machine Learning Model. Computing, 2(2), 15 (2021).
18. M. Mattheakis, P. Protopapas, D. Sondak, M. Di Giovanni and E. Kaxiras, Physical symmetries embedded in neural networks, arXiv
preprint arXiv:1904.08991 (2019).
19. D. Kim, J. Park and J. Nam, Chem. Eng. Sci., 245, 116972 (2021).
20. F. E. Chrit, S. Bowie and A. Alexeev, Phys. Fluids, 32(8), 083103 (2020).
21. X. Hu, J. Lin, D. Chen and X. Ku, Biomicrofluidics, 14(1), 014105 (2020).
22. Y. Shin, Commun. Comput. Phys., 28(5), 2042 (2020).
23. okada39, pinn cavity, https://github.com/okada39/pinn_cavity (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로