Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 4, 2022
Revised March 3, 2023
Accepted March 11, 2023
- Acknowledgements
- This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, MSIT) (No. NRF-2018R1A5A1024127, NRF2020R1A2C2008141, and NRF-2021M3H4A6A01041234
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Physics-informed neural networks for learning fluid flows with symmetry
Abstract
We suggest symmetric variational physics-informed neural networks (symmetric VPINN) to learn the
symmetric fluid flow and physical properties of fluids from a limited set of data. Symmetric VPINN is based on the
VPINN framework and guarantees the symmetry of the solutions by modifying the network architecture. The effectiveness of the symmetric VPINN is demonstrated by predicting the velocity profiles and power-law fluid properties in
the Poiseuille flow of a parallel channel. Symmetric VPINN models robustly and accurately learn power-law fluid flow
in both forward and inverse problems. We demonstrate that the symmetric VPINN can be particularly useful when the
power-law index is small and the data are extremely limited. The modified network architecture in the symmetric
VPINN guides the neural network towards an exact solution by reinforcing symmetry. We show that symmetric
VPINN is effective in obtaining unknown physical properties in practical experiments where data are scarce, suggesting the possibility of introducing known conditions of the system directly into the network structure to improve the
accuracy of the network.
Keywords
References
2. J. Berg and K. Nyström, Neurocomputing, 317, 28 (2018).
3. H. Sun, M. Hou, Y. Yang, T. Zhang, F. Weng and F. Han, Neural Process. Lett., 50(2), 1153 (2019).
4. S.F. Masri, A.G. Chassiakos and T.K. Caughey, J. Appl. Mech., 60(1), 123 (1993).
5. Y.-Y. Lin, J.-Y. Chang and C.-T. Lin, IEEE Trans. Neural Networks Learning Syst., 24(2), 310 (2012).
6. Y. Pan and J. Wang, IEEE Trans. Ind. Electron., 59(8), 3089 (2011).
7. B. Reyes, A. A. Howard, P. Perdikaris and A. M. Tartakovsky, Phys. Rev. Fluids, 6(7), 073301 (2021).
8. J. Taskinen and J. Yliruusi, Adv. Drug Deliv. Rev., 55(9), 1163 (2003).
9. R. Cang, H. Li, H. Yao, Y. Jiao and Y. Ren, Comput. Mater. Sci., 150, 212 (2018).
10. X. Jin, S. Cai, H. Li and G. E. Karniadakis, J. Comput. Phys., 426, 109951 (2021).
11. M. M. Almajid and M. O. Abu-Al-Saud, J. Pet. Sci. Eng., 208, 109205 (2022).
12. S. Cai, Z. Wang, S. Wang, P. Perdikaris and G. E. Karniadakis, J. Heat Transfer, 143(6), 060801 (2021).
13. X. Meng, Z. Li, D. Zhang and G. E. Karniadakis, Comput. Methods Appl. Mech. Eng., 370, 113250 (2020).
14. A. D. Jagtap, E. Kharazmi and G. E. Karniadakis, Comput. Methods Appl. Mech. Eng., 365, 113028 (2020).
15. A. D. Jagtap and G. E. Karniadakis, Extended Physics-informed Neural Networks (XPINNs): A Generalized Space-Time Domain
Decomposition based Deep Learning Framework for Nonlinear Partial Differential Equations., in: AAAI Spring Symposium: MLPS (2021).
16. E. Kharazmi, Z. Zhang and G. E. Karniadakis, Comput. Methods Appl. Mech. Eng., 374, 113547 (2021).
17. M. Yang and J. T. Foster, J. Machine Learning Model. Computing, 2(2), 15 (2021).
18. M. Mattheakis, P. Protopapas, D. Sondak, M. Di Giovanni and E. Kaxiras, Physical symmetries embedded in neural networks, arXiv
preprint arXiv:1904.08991 (2019).
19. D. Kim, J. Park and J. Nam, Chem. Eng. Sci., 245, 116972 (2021).
20. F. E. Chrit, S. Bowie and A. Alexeev, Phys. Fluids, 32(8), 083103 (2020).
21. X. Hu, J. Lin, D. Chen and X. Ku, Biomicrofluidics, 14(1), 014105 (2020).
22. Y. Shin, Commun. Comput. Phys., 28(5), 2042 (2020).
23. okada39, pinn cavity, https://github.com/okada39/pinn_cavity (2020)