Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 15, 2022
Revised February 5, 2023
Accepted February 24, 2023
- Acknowledgements
- This work was supported by National Natural Science Foundation of China (51976063) and Natural Science Foundation of Guangdong Province, China (2019A1515011253).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Criteria for evaluating working fluids in loop gravity-assisted heat systems
Abstract
A loop gravity-assisted heat pipe (LGHP) is characterized by passive heat dissipation and extensive application prospect. Dissimilar working fluids give rise to noticeable differences in their working performance (Critical heat
flux (CHF)). Consequently, it is of great significance to evaluate the performance of LGHP working fluid for its design.
In accordance with the basic theories of CHF and hydrodynamics, the pressure drop models of laminar, smooth turbulence, and completely rough turbulence flows were established, and an extensible two-phase composite property parameter was obtained. On this basis, the physical property parameter of transitional rough turbulent flow was also derived.
Finally, as persuasively illustrated by the experimental results, there was almost a linear association between CHFs and
the derived physical parameter. As a result, the physical parameters derived in this paper can be employed as favorable
criteria for the selection of LGHP working fluid
References
2. B. Agostini, M. Fabbri, J. E. Park, L. Wojtan, J. R. Thome and B.Michel, Heat Transfer Eng., 28, 258 (2007).
3. P. H. Chen, S. W. Chang, K. F. Chiang and J. Li, Recent Patents on Engineering, 2, 174 (2008).
4. Y. F. Maidanik, Y. G. Goncharov and K. A. Fershtater, ESA Special Publication, 1 (1991).
5. D. Khrustalev, IEEE, 145 (2002).
6. J. Li, D. M. Wang and G. P. B. Peterson, IEEE Transactions on Components, Packaging and Manufacturing Technology, 1, 519 (2011).
7. C. Sarno, C. Tantolin, R. Hodot, Y. Maydanik and S. Vershinin,Appl. Therm. Eng., 51, 764 (2013).
8. G. H. Zhou, J. Li and L. C. Lv, Appl. Therm. Eng., 109, 514 (2016).
9. R. Khodabandeh, Appl. Therm. Eng., 24, 2643 (2004).
10. A. Samba, H. Louahlia-Gualous, S. Le Masson and D. Nörterhäuser,Appl. Therm. Eng., 50, 1351 (2013).
11. C. C. Chang, S. C. Kuo, M. T. Ke and S. L. Chen, Exp. Heat Transfer, 23, 144 (2010).
12. S. H. Noie, Appl. Therm. Eng., 25, 495 (2005).
13. L. L. Vasiliev, Appl. Therm. Eng., 25, 1 (2005).
14. L. Z. Bai, J. H. Guo, G. P. Lin, J. He and D. S. Wen, Appl. Therm.Eng., 83, 88 (2015).
15. L. Z. Bai, G. P. Lin and H. X. Zhang, Acta Aeronautica et Astronautica Sinica, 29, 1112 (2008).
16. P. L. Zhang, X. T. Li, S. Shang, W. X. Shi and B. L. Wang, International Refrigeration and Air Conditioning Conference, 2519 (2014).
17. Z. H. Liu, X. F. Yang, G. S. Wang and G. L. Guo, Int. J. Heat Mass Tran., 53, 1914 (2010).
18. S. G. Liter and M. Kaviany, Int. J. Heat Mass Tran., 44, 4287 (2001).
19. R. Khodabandeh, Int. J. Refrig, 28, 190 (2005).
20. R. Khodabandeh and B. Palm, Int. J. Therm. Sci., 41, 619 (2002).
21. Z. Li and R. H. S. Winterton, Int. J. Heat Mass Tran., 2759 (1991).
22. M. Cooper, Advances in Heat Transfer, 157 (1984).
23. J. J. He, J. P. Liu and X. W. Xu, Int. J. Heat Mass Tran., 105, 452 (2017).
24. G. Kocamustafaogullari and M. Ishii, Int. J. Heat Mass Tran., 26, 1377 (1983).
25. K. Zhu, X. Q. Li, H. L. Li, X. Q. Chen and Y. B. Wang, Appl. Therm.Eng., 130, 354 (2018).
26. A. Franco and S. Filippeschi, Exp. Therm. Fluid Sci., 51, 302 (2013).
27. J. W. Chen, W. B. Huang, J. W. Cen, W. J. Cao, Z. B. Li, F. Li and F. M.Jiang, Energy, 255, 124531 (2022).
28. R. Singh, T. Nguyen, M. Mochizuki and A. Akbarzadeh, Therm. Sci.Eng. Prog., 35, 101451 (2022).
29. Y. D. Guo, G. P. Lin, J. He, H. X. Zhang, J. Y. Miao and J. D. Li, Appl.Therm. Eng., 155, 267 (2019).
30. R. W. Fox and A. T. Mcdonald, Mech. Eng., 35, 7 (1973).
31. L. J. Liang, J. P. Liu and X. W. Xu, J. Chem. Ind. Eng. (China), 69,4231 (2018).
32. Y. F. Maydanik, Appl. Therm. Eng., 25, 635 (2005).
33. J. G. Ruan, J. P. Liu, X. W. Xu, J. X. Chen and G. L. Li, Appl. Therm.Eng., 140, 325 (2018).
34. R. J. Moffat, Exp. Therm. Fluid Sci., 1, 3 (1988).
35. G. Yao, Z. Ma, L. Luo and R. Chen, J. Jiangsu Univ. Sci. Technol.(Natural Science Edition), 17, 9 (2003).