ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 15, 2022
Revised February 5, 2023
Accepted February 24, 2023
Acknowledgements
This work was supported by National Natural Science Foundation of China (51976063) and Natural Science Foundation of Guangdong Province, China (2019A1515011253).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Criteria for evaluating working fluids in loop gravity-assisted heat systems

1School of Electric Power, South China University of Technology, Guangzhou 510640, China 2Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, South China University of Technology, Guangzhou 510640, China 3State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China
Korean Journal of Chemical Engineering, September 2023, 40(9), 2128-2137(10), 10.1007/s11814-023-1404-4
downloadDownload PDF

Abstract

A loop gravity-assisted heat pipe (LGHP) is characterized by passive heat dissipation and extensive application prospect. Dissimilar working fluids give rise to noticeable differences in their working performance (Critical heat flux (CHF)). Consequently, it is of great significance to evaluate the performance of LGHP working fluid for its design. In accordance with the basic theories of CHF and hydrodynamics, the pressure drop models of laminar, smooth turbulence, and completely rough turbulence flows were established, and an extensible two-phase composite property parameter was obtained. On this basis, the physical property parameter of transitional rough turbulent flow was also derived. Finally, as persuasively illustrated by the experimental results, there was almost a linear association between CHFs and the derived physical parameter. As a result, the physical parameters derived in this paper can be employed as favorable criteria for the selection of LGHP working fluid

References

1. R. E. Simons and R. C. Chu, IEEE, 1 (2000).
2. B. Agostini, M. Fabbri, J. E. Park, L. Wojtan, J. R. Thome and B.Michel, Heat Transfer Eng., 28, 258 (2007).
3. P. H. Chen, S. W. Chang, K. F. Chiang and J. Li, Recent Patents on Engineering, 2, 174 (2008).
4. Y. F. Maidanik, Y. G. Goncharov and K. A. Fershtater, ESA Special Publication, 1 (1991).
5. D. Khrustalev, IEEE, 145 (2002).
6. J. Li, D. M. Wang and G. P. B. Peterson, IEEE Transactions on Components, Packaging and Manufacturing Technology, 1, 519 (2011).
7. C. Sarno, C. Tantolin, R. Hodot, Y. Maydanik and S. Vershinin,Appl. Therm. Eng., 51, 764 (2013).
8. G. H. Zhou, J. Li and L. C. Lv, Appl. Therm. Eng., 109, 514 (2016).
9. R. Khodabandeh, Appl. Therm. Eng., 24, 2643 (2004).
10. A. Samba, H. Louahlia-Gualous, S. Le Masson and D. Nörterhäuser,Appl. Therm. Eng., 50, 1351 (2013).
11. C. C. Chang, S. C. Kuo, M. T. Ke and S. L. Chen, Exp. Heat Transfer, 23, 144 (2010).
12. S. H. Noie, Appl. Therm. Eng., 25, 495 (2005).
13. L. L. Vasiliev, Appl. Therm. Eng., 25, 1 (2005).
14. L. Z. Bai, J. H. Guo, G. P. Lin, J. He and D. S. Wen, Appl. Therm.Eng., 83, 88 (2015).
15. L. Z. Bai, G. P. Lin and H. X. Zhang, Acta Aeronautica et Astronautica Sinica, 29, 1112 (2008).
16. P. L. Zhang, X. T. Li, S. Shang, W. X. Shi and B. L. Wang, International Refrigeration and Air Conditioning Conference, 2519 (2014).
17. Z. H. Liu, X. F. Yang, G. S. Wang and G. L. Guo, Int. J. Heat Mass Tran., 53, 1914 (2010).
18. S. G. Liter and M. Kaviany, Int. J. Heat Mass Tran., 44, 4287 (2001).
19. R. Khodabandeh, Int. J. Refrig, 28, 190 (2005).
20. R. Khodabandeh and B. Palm, Int. J. Therm. Sci., 41, 619 (2002).
21. Z. Li and R. H. S. Winterton, Int. J. Heat Mass Tran., 2759 (1991).
22. M. Cooper, Advances in Heat Transfer, 157 (1984).
23. J. J. He, J. P. Liu and X. W. Xu, Int. J. Heat Mass Tran., 105, 452 (2017).
24. G. Kocamustafaogullari and M. Ishii, Int. J. Heat Mass Tran., 26, 1377 (1983).
25. K. Zhu, X. Q. Li, H. L. Li, X. Q. Chen and Y. B. Wang, Appl. Therm.Eng., 130, 354 (2018).
26. A. Franco and S. Filippeschi, Exp. Therm. Fluid Sci., 51, 302 (2013).
27. J. W. Chen, W. B. Huang, J. W. Cen, W. J. Cao, Z. B. Li, F. Li and F. M.Jiang, Energy, 255, 124531 (2022).
28. R. Singh, T. Nguyen, M. Mochizuki and A. Akbarzadeh, Therm. Sci.Eng. Prog., 35, 101451 (2022).
29. Y. D. Guo, G. P. Lin, J. He, H. X. Zhang, J. Y. Miao and J. D. Li, Appl.Therm. Eng., 155, 267 (2019).
30. R. W. Fox and A. T. Mcdonald, Mech. Eng., 35, 7 (1973).
31. L. J. Liang, J. P. Liu and X. W. Xu, J. Chem. Ind. Eng. (China), 69,4231 (2018).
32. Y. F. Maydanik, Appl. Therm. Eng., 25, 635 (2005).
33. J. G. Ruan, J. P. Liu, X. W. Xu, J. X. Chen and G. L. Li, Appl. Therm.Eng., 140, 325 (2018).
34. R. J. Moffat, Exp. Therm. Fluid Sci., 1, 3 (1988).
35. G. Yao, Z. Ma, L. Luo and R. Chen, J. Jiangsu Univ. Sci. Technol.(Natural Science Edition), 17, 9 (2003).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로