ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 14, 2022
Revised May 20, 2023
Accepted May 24, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Gas transport characteristics of mixed matrix membrane containing MIL-100 (Fe) metal-organic frameworks and PEBAX precursors

1Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran 2Department of Chemical Engineering, Ming Chi University of Technology, Taiwan
v.pirouzfar@iauctb.ac.ir, chsu@mail.mcut.edu.tw
Korean Journal of Chemical Engineering, September 2023, 40(9), 2138-2148(11), 10.1007/s11814-023-1501-4
downloadDownload PDF

Abstract

This research scrutinized the effect of adding MIL-100 (Fe) metal-organic frameworks (MOFs) on the PEBAX membranes in two grades, 1657 and 2533. Initially, the intended membranes were synthesized by the solutioncasting method. Then, XRD and SEM were applied to examine the influence of adding MIL-100 (Fe) to the structure of both membranes. Consequently, the separation function of the pair gases of CO2/CH4, CO2/N2, and CO2/O2 and their permeability were considered at the pressure of 3.5 bar and temperature of 25 o C. Eventually, their function was compared by Robeson diagrams of 1991 and 2008. According to Robeson diagrams, the comparison outcomes indicated that the PEBAX1657/MIL-100 (Fe) and PEBAX2533/MIL-100 (Fe) membranes containing 5% of MOF represent better performance in separating CO2/CH4. However, their function for separating the considered gases requires more modifications.

References

1. H. R. Mahdavi, N. Azizi and T. Mohammadi, J. Polym. Res., 24(5),1 (2017).
2. Y. Ban, M. Zhao and W. Yang, Front. Chem. Sci. Eng., 14(2), 188 (2020).
3. X. Liu, Front. Chem. Sci. Eng., 14(2), 216 (2020).
4. N. Behnia and V. Pirouzfar, Polym. Bull., 75(10), 4341 (2018).
5. S. M. Hosseini, V. Pirouzfar and H. Azami, J. Membr. Biol., 250(6),651 (2017).
6. V. Pirouzfar, High performance gas separation carbon molecular sieve membranes, LAP LAMBERT Academic Publishing (2015).
7. M. Yarmohammadi, A. K. Adeli, M. Z. Pedram, M. Shahidzadeh and V. Pirouzfar, J. Appl. Polym. Sci., 135(45), 46707 (2018).
8. M. Salimi and V. Pirouzfar, J. Aust. Ceram. Soc., 54(2), 271 (2018).
9. V. Pirouzfar, A. Zarringhalam Moghaddam and B. Mirza, J. Energy Resour. Technol., 134(4), 041101 (2012).
10. N. Sohrabi, A. Alihosseini, V. Pirouzfar and M. Z. Pedram, Membranes, 10(10), 283 (2020).
11. S. F. Soleymanipour, A. H. S. Dehaghani, V. Pirouzfar and A. Alihosseini, J. Appl. Polym. Sci., 133(34) (2016).
12. M. Sheikhi, L. Mirshekar, B. Kamarehie, M. Ghaderpoori, B. Ramavandi, F. Amini, N. Fadaie and S. Sahebi, Chem. Eng. Technol.,44(7), 1251 (2021).
13. S. Seraj, M. Sheikhi, T. Mohammadi and M. A. Tofighy, Oil-Water Mixtures and Emulsions, Volume 1: Membrane Materials for Separation and Treatment, Chapter 8, 305 (2022).
14. A. H. Saeedi Dehaghani, V. Pirouzfar and A. Alihosseini, Polym.Bull., 77(12), 6467 (2020).
15. N. N. Li, A. G. Fane, W. S. W. Ho and T. Matsuura, Advanced membrane technology and applications, John Wiley & Sons (2011).
16. R. S. Murali, S. Sridhar, T. Sankarshana and Y. V. L. Ravikumar, Ind.Eng. Chem. Res., 49(14), 6530 (2010).
17. S. Heydari and V. Pirouzfar, RSC Adv., 6(17), 14149 (2016).
18. M. Isanejad, N. Azizi and T. Mohammadi, J. Appl. Polym. Sci.,134(9) (2017).
19. C. Gu, Y. Liu, W. Wang, J. Liu and J. Hu, Front. Chem. Eng., 15, 437 (2021).
20. V. Pirouzfar and M. R. Omidkhah, Iran. Polym. J., 25(3), 203 (2016).
21. V. Nafisi and M. B. Hagg, J. Membr. Sci., 459, 244 (2014).
22. G. E. Cmarik, M. Kim, S. M. Cohen and K. S. Walton, Langmuir,28(44), 15606 (2012).
23. P. Horcajada, S. Surblé, C. Serre, D. Y. Hong, Y. K. Seo, J. S. Chang and G. Férey, Chem. Commun., (27), 2820 (2007).
24. G. Dong, J. Hou, J. Wang, Y. Zhang, V. Chen and J. Liu, J. Membr.Sci., 520, 860 (2016).
25. L. Xu, L. Xiang, C. Wang, J. Yu, L. Zhang and Y. Pan, Chin. J. Chem.Eng., 25(7), 882 (2017).
26. L. Dong, M. Chen, J. Li, D. Shi, W. Dong, X. Li and Y. Bai, J. Membr.Sci., 520, 801 (2016).
27. J. Shen, G. Liu, K. Huang, Q. Li, K. Guan, Y. Li and Y. W. Jin, J.Membr. Sci., 513, 155 (2016).
28. S. Meshkat, S. Kaliaguine and D. Rodrigue, Sep. Purif. Technol., 200,177 (2018).
29. M. A. Rodrigues, J. de Souza Ribeiro, E. de S. Costa, J. L. D. Miranda and H. C. Ferraz, Sep. Purif. Technol., 192, 491 (2018).
30. G. Gao, Y. Xing, T. Liu, J. Wang and X. Hou, Microchem. J., 146, 126 (2019).
31. Y. Fang, J. Wen, G. Zeng, F. Jia, S. Zhang, Z. Peng and H. Zhang,Chem. Eng. J., 337, 532 (2018).
32. I. Bezverkhyy, G. Weber and J. P. Bellat, Micropor. Mesopor. Mater.,219, 117 (2016).
33. F. Zhang, J. Shi, Y. Jin, Y. Fu, Y. Zhong and W. Zhu, Chem. Eng. J.,259, 183 (2015).
34. G. Chen, X. Leng, J. Luo, L. You, C. Qu, X. Dong and J. Ni, Molecules, 24(7), 1211 (2019).
35. A. H. Saeedi Dehaghani and V. Pirouzfar, Chem. Eng. Technol.,40(9), 1693 (2017).
36. V. Pirouzfar, S. N. Moghaddam, S. A. H. S. Mousavi, A. H. S.Dehaghani, H. Mollabagher and C. H. Su, J. Contam. Hydrol., 249,104048 (2022).
37. E. Schindler and F. Maier, Manufacture of porous carbon membranes, Google Patents (1990).
38. L. M. Robeson, J. Membr. Sci., 62(2), 165 (1991).
39. D. Q. Vu, W. J. Koros and S. J. Miller, J. Membr. Sci., 211(2), 311 (2003).
40. Y. Fang, Z. Yang, H. Li and X. Liu, Environ. Sci. Pollut. Res., 27, 4703 (2020).
41. A. Jomekian, R. M. Behbahani, T. Mohammadi and A. Kargari, J.Nat. Gas Sci. Eng., 31, 562 (2016).
42. J. Zhao, K. Xie, L. Liu, M. Liu, W. Qiu and P. A. Webley, J. Membr. Sci., 583, 23 (2019).
43. Y. Y. Fu, C. X. Yang and X. P. Yan, J. Chromatogr. A, 1274, 137 (2013).
44. X.Wang, Q. Wang, F. Gao, Y. Yang and H. Guo, ACS Appl. Mater.Interfaces, 6(14), 11573 (2014).
45. H. T. Lu, W. Li, E. S. Miandoab, S. Kanehashi and G. Hu, Front.Chem. Sci. Eng., 15, 464 (2021).
46. R. Sarmadi, M. Salimi and V. Pirouzfar, Environ. Sci. Pollut. Res.,27(32), 40618 (2020).
47. J. Shen, G. Liu, K. Huang, Q. Li, K. Guan, Y. Li and W. Jin, J. Membr.Sci., 513, 155 (2016).
48. T. Khosravi and M. Omidkhah, J. Energy Chem., 26(3), 530 (2017).
49. A. Ehsani and M. Pakizeh, J. Taiwan Inst. Chem. Eng., 66, 414 (2016).
50. B. Zornoza, B. Seoane, J. M. Zamaro, C. Téllez and J. Coronas,Chem. Phys. Chem., 12(15), 2781 (2011).
51. A. Car, C. Stropnik and K. V. Peinemann, Desalination, 200, 424 (2006).
52. H. B. T. Jeazet, T. Koschine, C. Staudt, K. Raetzke and C. Janiak,Membranes, 3(4), 331 (2013).
53. S. Meshkat, S. Kaliaguine and D. Rodrigue, Sep. Purif. Technol.,200, 177 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로