Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 6, 2023
Revised March 7, 2023
Accepted March 31, 2023
- Acknowledgements
- We are grateful for the funding supported by the National Natural Science Foundation of China (Grant nos. U22A20421; 22078275), the Fundamental Research Funds for the Central Universities (Grant no. 20720220065)
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Hydrogenation of dimethyl 2,5-furandicarboxylate to dimethyl tetrahydrofuran2,5-dicarboxylate over Ru/HY
Abstract
The hydrogenation of biomass-based furan compounds is an important step for the catalytic valorization of
biobased chemicals. In this work, Ru-based catalysts supported on different supports, such as HY, MgO and Amberlyst15, were prepared and estimated for the hydrogenation of dimethyl 2,5-furandicarboxylate (FDMC). Among them, Ru/
HY provided a desirable yield of 99.4% for tetrahydrofuran-2,5-dicarboxylic acid dimethyl ester (THFDMC) under
90 o
C and 3 MPa H2. Based on catalyst characterization, Ru/HY could offer more surface Ru0
species and carbon radical intermediates than other catalysts, which could largely favor the activation of hydrogen and then promote the
hydrogenation of FDMC over Ru/HY.
Keywords
References
2. X. Yu, H. Liu, Q. Wang, W. Jia, H. Wang, W. Li, J. Zheng, Y. Sun,X. Tang, X. Zeng, F. Xu and L. Lin, ACS Sustain. Chem. Eng., 9,13176 (2021).
3. Y. Queneau and B. Han, Innovation (Camb), 3, 100184 (2022).
4. S. Li, M. Dong, M. Peng, Q. Mei, Y. Wang, J. Yang, Y. Yang, B. Chen,S. Liu, D. Xiao, H. Liu, D. Ma and B. Han, Innovation (Camb), 3,100189 (2022).
5. S. Kim, Y. F. Tsang, E. E. Kwon, K.-Y. A. Lin and J. Lee, Korean J.Chem. Eng., 36, 1 (2018).
6. S. Sadjadi, V. Farzaneh, S. Shirvani and M. Ghashghaee, Korean J.Chem. Eng., 34, 692 (2017).
7. X. Lv, J. Xiao, T. Sun, X. Huo, M. Song and L. Shen, Korean J. Chem.Eng., 35, 394 (2017).
8. W. Yu, Y.-P. Hsu and C.-S. Tan, Appl. Catal., B, 196, 185 (2016).
9. A. Salazar, P. Hunemorder, J. Rabeah, A. Quade, R. V. Jagadeesh and E. Mejia, ACS Sustain. Chem. Eng., 7, 12061 (2019).
10. T. Dimitriadis, D. N. Bikiaris, G. Z. Papageorgiou and G. Floudas, Macromol. Chem. Phys., 217, 2056 (2016).
11. S.K. Burgess, J.E. Leisen, B.E. Kraftschik, C.R. Mubarak, R.M. Kriegel and W. J. Koros, Macromolecules, 47, 1383 (2014).
12. A. Codou, M. Moncel, J. G. van Berkel, N. Guigo and N. Sbirrazzuoli, Phys. Chem. Chem. Phys., 18, 16647 (2016).
13. C. F. Araujo, M. M. Nolasco, P. J. A. Ribeiro-Claro, S. Rudić, A. J. D. Silvestre, P.D. Vaz and A.F. Sousa, Macromolecules, 51, 3515 (2018).
14. G. Z. Papageorgiou, D. G. Papageorgiou, Z. Terzopoulou and D. N. Bikiaris, Eur. Polym. J., 83, 202 (2016).
15. H. Liu, X. Tang, X. Zeng, Y. Sun, X. Ke, T. Li, J. Zhang and L. Lin, Green Energy Environ., 7, 900 (2022).
16. S. S. R. Gupta, A. Vinu and M. L. Kantam, J. Catal., 389, 259 (2020).
17. D. Zhao, T. Su, C. Len, R. Luque and Z. Yang, Green Chem., 24, 6782 (2022).
18. W. Xie, B. Chen, W. Jia, H. Liu, Z. Li, S. Yang, X. Tang, X. Zeng, Y. Sun, X. Ke, T. Li, H. Fang and L. Lin, J. Energy Chem., 75, 95 (2022).
19. Y. Nakagawa, M. Yabushita and K. Tomishige, Trans. Tianjin Univ., 27, 165 (2021).
20. Q. Yuan, K. Hiemstra, T.G. Meinds, I. Chaabane, Z. Tang, L. Rohrbach, W. Vrijburg, T. Verhoeven, E. J. M. Hensen, S. van der Veer,
P. P. Pescarmona, H. J. Heeres and P. J. Deuss, ACS Sustain. Chem. Eng., 7, 4647 (2019).
21. C. Chien Truong, D. Kumar Mishra, S. Hyeok Ko, Y. Jin Kim and Y. W. Suh, ChemSusChem, 15, e202200178 (2022).
22. H. Kataoka, D. Kosuge, K. Ogura, J. Ohyama and A. Satsuma, Catal. Today, 352, 60 (2020).
23. G. Bottari, A. J. Kumalaputri, K. K. Krawczyk, B. L. Feringa, H. J. Heeres and K. Barta, ChemSusChem, 8, 1323 (2015).
24. D. K. Mishra, H. J. Lee, C. C. Truong, J. Kim, Y. W. Suh, J. Baek and Y. J. Kim, Mol. Catal., 484, 110722 (2020).
25. N. Perret, A. Grigoropoulos, M. Zanella, T. D. Manning, J. B. Claridge and M. J. Rosseinsky, ChemSusChem, 9, 521 (2016).
26. A. Wang, P. Berton, H. Zhao, S. L. Bryant, M. G. Kibria and J. Hu, ACS Sustain. Chem. Eng., 9, 16115 (2021).
27. Y. He, J. Fan, J. Feng, C. Luo, P. Yang and D. Li, J. Catal., 331, 118 (2015).
28. L. Wang, L. Lian, H. Yan, F. Wang, J. Wang, C. Yang and L. Ma, RSC Adv., 9, 30335 (2019).
29. S. Jin, Z. Xiao, C. Li, C. T. Williams and C. Liang, J. Energy Chem.,23, 185 (2014).
30. J. Zhang, X. Mao, S. Wang, L. Liang, M. Cao, L. Wang, G. Li, Y. Xu and X. Huang, Angew. Chem. Int. Ed., 61, e202116867 (2022).
31. S. Fulignati, C. Antonetti, E. Wilbers, D. Licursi, H. J. Heeres and A. M. Raspolli Galletti, J. Ind. Eng. Chem., 100, 390.e1 (2021).
32. X. L. Dong, Y. F. Jia, M. Y. Zhang, S. Q. Ji, L. P. Leng, J. H. Horton, C. Xu, C. He, Q. Tan, J. W. Zhang and Z. J. Li, Chem. Eng. J., 451, 138660 (2023).