ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 6, 2023
Revised March 7, 2023
Accepted March 31, 2023
Acknowledgements
We are grateful for the funding supported by the National Natural Science Foundation of China (Grant nos. U22A20421; 22078275), the Fundamental Research Funds for the Central Universities (Grant no. 20720220065)
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Hydrogenation of dimethyl 2,5-furandicarboxylate to dimethyl tetrahydrofuran2,5-dicarboxylate over Ru/HY

Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, College of Energy, Xiamen University, Xiamen, 361102, P. R. China
x.tang@xmu.edu.cn
Korean Journal of Chemical Engineering, September 2023, 40(9), 2149-2158(10),
downloadDownload PDF

Abstract

The hydrogenation of biomass-based furan compounds is an important step for the catalytic valorization of biobased chemicals. In this work, Ru-based catalysts supported on different supports, such as HY, MgO and Amberlyst15, were prepared and estimated for the hydrogenation of dimethyl 2,5-furandicarboxylate (FDMC). Among them, Ru/ HY provided a desirable yield of 99.4% for tetrahydrofuran-2,5-dicarboxylic acid dimethyl ester (THFDMC) under 90 o C and 3 MPa H2. Based on catalyst characterization, Ru/HY could offer more surface Ru0 species and carbon radical intermediates than other catalysts, which could largely favor the activation of hydrogen and then promote the hydrogenation of FDMC over Ru/HY.

References

1. F. Li, X.-L. Li, C. Li, J. Shi and Y. Fu, Green Chem., 20, 3050 (2018).
2. X. Yu, H. Liu, Q. Wang, W. Jia, H. Wang, W. Li, J. Zheng, Y. Sun,X. Tang, X. Zeng, F. Xu and L. Lin, ACS Sustain. Chem. Eng., 9,13176 (2021).
3. Y. Queneau and B. Han, Innovation (Camb), 3, 100184 (2022).
4. S. Li, M. Dong, M. Peng, Q. Mei, Y. Wang, J. Yang, Y. Yang, B. Chen,S. Liu, D. Xiao, H. Liu, D. Ma and B. Han, Innovation (Camb), 3,100189 (2022).
5. S. Kim, Y. F. Tsang, E. E. Kwon, K.-Y. A. Lin and J. Lee, Korean J.Chem. Eng., 36, 1 (2018).
6. S. Sadjadi, V. Farzaneh, S. Shirvani and M. Ghashghaee, Korean J.Chem. Eng., 34, 692 (2017).
7. X. Lv, J. Xiao, T. Sun, X. Huo, M. Song and L. Shen, Korean J. Chem.Eng., 35, 394 (2017).
8. W. Yu, Y.-P. Hsu and C.-S. Tan, Appl. Catal., B, 196, 185 (2016).
9. A. Salazar, P. Hunemorder, J. Rabeah, A. Quade, R. V. Jagadeesh and E. Mejia, ACS Sustain. Chem. Eng., 7, 12061 (2019).
10. T. Dimitriadis, D. N. Bikiaris, G. Z. Papageorgiou and G. Floudas, Macromol. Chem. Phys., 217, 2056 (2016).
11. S.K. Burgess, J.E. Leisen, B.E. Kraftschik, C.R. Mubarak, R.M. Kriegel and W. J. Koros, Macromolecules, 47, 1383 (2014).
12. A. Codou, M. Moncel, J. G. van Berkel, N. Guigo and N. Sbirrazzuoli, Phys. Chem. Chem. Phys., 18, 16647 (2016).
13. C. F. Araujo, M. M. Nolasco, P. J. A. Ribeiro-Claro, S. Rudić, A. J. D. Silvestre, P.D. Vaz and A.F. Sousa, Macromolecules, 51, 3515 (2018).
14. G. Z. Papageorgiou, D. G. Papageorgiou, Z. Terzopoulou and D. N. Bikiaris, Eur. Polym. J., 83, 202 (2016).
15. H. Liu, X. Tang, X. Zeng, Y. Sun, X. Ke, T. Li, J. Zhang and L. Lin, Green Energy Environ., 7, 900 (2022).
16. S. S. R. Gupta, A. Vinu and M. L. Kantam, J. Catal., 389, 259 (2020).
17. D. Zhao, T. Su, C. Len, R. Luque and Z. Yang, Green Chem., 24, 6782 (2022).
18. W. Xie, B. Chen, W. Jia, H. Liu, Z. Li, S. Yang, X. Tang, X. Zeng, Y. Sun, X. Ke, T. Li, H. Fang and L. Lin, J. Energy Chem., 75, 95 (2022).
19. Y. Nakagawa, M. Yabushita and K. Tomishige, Trans. Tianjin Univ., 27, 165 (2021).
20. Q. Yuan, K. Hiemstra, T.G. Meinds, I. Chaabane, Z. Tang, L. Rohrbach, W. Vrijburg, T. Verhoeven, E. J. M. Hensen, S. van der Veer,
P. P. Pescarmona, H. J. Heeres and P. J. Deuss, ACS Sustain. Chem. Eng., 7, 4647 (2019).
21. C. Chien Truong, D. Kumar Mishra, S. Hyeok Ko, Y. Jin Kim and Y. W. Suh, ChemSusChem, 15, e202200178 (2022).
22. H. Kataoka, D. Kosuge, K. Ogura, J. Ohyama and A. Satsuma, Catal. Today, 352, 60 (2020).
23. G. Bottari, A. J. Kumalaputri, K. K. Krawczyk, B. L. Feringa, H. J. Heeres and K. Barta, ChemSusChem, 8, 1323 (2015).
24. D. K. Mishra, H. J. Lee, C. C. Truong, J. Kim, Y. W. Suh, J. Baek and Y. J. Kim, Mol. Catal., 484, 110722 (2020).
25. N. Perret, A. Grigoropoulos, M. Zanella, T. D. Manning, J. B. Claridge and M. J. Rosseinsky, ChemSusChem, 9, 521 (2016).
26. A. Wang, P. Berton, H. Zhao, S. L. Bryant, M. G. Kibria and J. Hu, ACS Sustain. Chem. Eng., 9, 16115 (2021).
27. Y. He, J. Fan, J. Feng, C. Luo, P. Yang and D. Li, J. Catal., 331, 118 (2015).
28. L. Wang, L. Lian, H. Yan, F. Wang, J. Wang, C. Yang and L. Ma, RSC Adv., 9, 30335 (2019).
29. S. Jin, Z. Xiao, C. Li, C. T. Williams and C. Liang, J. Energy Chem.,23, 185 (2014).
30. J. Zhang, X. Mao, S. Wang, L. Liang, M. Cao, L. Wang, G. Li, Y. Xu and X. Huang, Angew. Chem. Int. Ed., 61, e202116867 (2022).
31. S. Fulignati, C. Antonetti, E. Wilbers, D. Licursi, H. J. Heeres and A. M. Raspolli Galletti, J. Ind. Eng. Chem., 100, 390.e1 (2021).
32. X. L. Dong, Y. F. Jia, M. Y. Zhang, S. Q. Ji, L. P. Leng, J. H. Horton, C. Xu, C. He, Q. Tan, J. W. Zhang and Z. J. Li, Chem. Eng. J., 451, 138660 (2023).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로