Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 18, 2023
Revised June 16, 2023
Accepted June 22, 2023
- Acknowledgements
- This research was funded by the National Research Foundation of Korea (NRF) under grants listed as NRF-2021R1A5A6002853 and 2020R1A2C1003885. This work was also supported by the Korea Institute for Advancement of Technology (KIAT) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. P0017363).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Synthesis of stabilizer-free small PdAg alloy nanoparticles supported on carbon using a continuous Couette-Taylor reactor with enhanced electrochemical activity toward ethanol oxidation reaction
Abstract
An organic surfactant/stabilizer plays a critical role in synthesizing small and well-dispersed nanoparticles
with large catalytic surface areas. However, a stabilizer typically interferes with the catalytic reaction by forming organic
layers on the surface of nanoparticles. Here, we report that the role of a stabilizer can be replaced by the periodic and
uniform fluid shear of Taylor vortex flow. Small, well-dispersed PdAg alloy nanoparticles on carbon were synthesized in
the continuous Couette-Taylor (CT) reactor in the absence of a stabilizer. The synthesized PdAg nanoparticles
(Pd64Ag36/C) showed two times higher mass activity than commercial Pd/C and good stability (retained 33% after
3,600 s) toward the electrochemical ethanol oxidation reaction due to their clean surface and alloy structure.
Keywords
References
2. G. S. Park, S. I. Mo, J. H. Kim and J. W. Yun, Korean J. Chem. Eng.,39, 1796 (2022).
3. S. H. Kim, H. J. Kim, S. K. Bhatia, R. Gurav, J. M. Jeon, J. J. Yoon, S.Kim, J. Ahn and Y. H. Yang, Korean J. Chem. Eng., 39, 2156 (2022).
4. Z. Yavari, M. S. Afarani, A. M. Arabi and M. Noroozifar, Korean J.Chem. Eng., 37, 1669 (2020).
5. S. Barati, M. M. Ghazi and B. Khoshandam, Korean J. Chem. Eng.,36, 146 (2019).
6. M. Yang, X. Lao, J. Sun, N. Ma, S. Wang, W. Ye and P. Guo, Langmuir, 36, 11094 (2020).
7. N. Ye, Z. Jiang and T. Fang, Electrochim. Acta, 352, 136473 (2020).
8. J. J. Duan, J. J. Feng, L. Zhang, J. Yuan, Q. L. Zhang and A. J. Wang,Int. J. Hydrog. Energy, 44, 27455 (2019).
9. H. Lv, Y. Wang, A. Lopes, D. Xu and B. Liu, Appl. Catal. B-Environ., 249, 116 (2019).
10. A. L. Wang, X. J. He, X. F. Lu, H. Xu, Y. X. Tong and G. R. Li, Angew.Chem. Int. Ed., 54, 3669 (2015).
11. A. R. Poerwoprajitno, L. Gloag, S. Cheong, J. J. Gooding and R. D.Tilley, Nanoscale, 11, 18995 (2019).
12. H. Q. Pham, T. T. Huynh, S. T. Nguyen, N. N. Dang and L. G. Bach,Fuel, 276, 118078 (2020).
13. Y. G. Feng, H. J. Niu, L. P. Mei, J. J. Feng, K. M. Fang and A. J. Wang,J. Colloid Interface Sci., 575, 425 (2020).
14. G. Ren, Z. Zhang, Y. Liu, Y. Liang, X. Zhang, S. Wu and J. Shen, J.Alloys Compd., 830, 154671 (2020).
15. Z. Tang, L. Zhang, S. Tang, J. Li, J. Xu, N. Li, L. Xu and J. Du, Nanomaterials, 12, 2990 (2022).
16. Z. M. Tang, L. Zhang, J. J. Du and L. J. Xu, Trans. Nonferrous Met.Soc. China, 32, 1994 (2022).
17. Y. Li and M. A. El-Sayed, J. Phys. Chem. B, 105, 8938 (2001).
18. Z. W. Guo, X. W. Kang, X. S. Zheng, J. Huang and S. W. Chen, J.Catal., 374, 101 (2019).
19. Z. Yin, D. F. Gao, S. Y. Yao, B. Zhao, F. Cai, L. L. Lin, P. Tang, P. Zhai,G. X. Wang, D. Ma and X. H. Bao, Nano Energy, 27, 35 (2016).
20. P. Jiang, W.S. Kim and T. Yu, ACS Appl. Nano Mater., 6, 1880 (2023).
21. Z. M. Tang, W. S. Kim and T. K. Yu, Chem. Eng. J., 359, 1436 (2019).
22. S. Lee, C. H. Lee and W. S. Kim, J. Cryst. Growth, 373, 32 (2013).
23. L. Liu, X. Yang, J. Yang, G. Li, Y. Guo, G. Wang and L. P. Wang, J.Taiwan Inst. Chem. Eng., 131, 104141 (2022).
24. P. Jiang, W. S. Kim and T. Yu, ACS Appl. Nano Mater., 5, 9604 (2022).
25. J. J. Lv, S. S. Li, A. J. Wang, L. P. Mei, J. J. Feng, J. R. Chen and Z. J.Chen, J. Power Sources, 269, 104 (2014).
26. X. Y. Qiu, R. P. Zhao, Y. A. Li, Y. W. Tang, D. M. Sun, S. H. Wei and T. H. Lu, RSC Adv., 4, 57144 (2014).
27. X. Yan, X. Hu, G. Fu, L. Xu, J. M. Lee and Y. Tang, Small, 14,1703940 (2018).
28. B. Hammer, Y. Morikawa and J. K. Nørskov, Phys. Rev. Lett., 76,2141 (1996).
29. W. Huang, X. Kang, C. Xu, J. Zhou, J. Deng, Y. Li and S. Cheng,Adv. Mater., 30, 1706962 (2018).
30. S. Woo, I. Kim, S. Bong, J. Lee and H. Kim, J. Nanosci. Nanotechnol., 11, 7412 (2011).
31. W. Huang, X. Kang, C. Xu, J. Zhou, J. Deng, Y. Li and S. Cheng,Adv. Mater., 30, 1706962 (2018).