ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 18, 2023
Revised June 16, 2023
Accepted June 22, 2023
Acknowledgements
This research was funded by the National Research Foundation of Korea (NRF) under grants listed as NRF-2021R1A5A6002853 and 2020R1A2C1003885. This work was also supported by the Korea Institute for Advancement of Technology (KIAT) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. P0017363).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synthesis of stabilizer-free small PdAg alloy nanoparticles supported on carbon using a continuous Couette-Taylor reactor with enhanced electrochemical activity toward ethanol oxidation reaction

1Department of Chemical Engineering, Integrated Engineering Major, College of Engineering, Kyung Hee University, Yongin 17104, Korea 2Department of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
wskim@khu.ac.kr, tkyu@khu.ac.kr
Korean Journal of Chemical Engineering, September 2023, 40(9), 2159-2164(6), 10.1007/s11814-023-1522-z
downloadDownload PDF

Abstract

An organic surfactant/stabilizer plays a critical role in synthesizing small and well-dispersed nanoparticles with large catalytic surface areas. However, a stabilizer typically interferes with the catalytic reaction by forming organic layers on the surface of nanoparticles. Here, we report that the role of a stabilizer can be replaced by the periodic and uniform fluid shear of Taylor vortex flow. Small, well-dispersed PdAg alloy nanoparticles on carbon were synthesized in the continuous Couette-Taylor (CT) reactor in the absence of a stabilizer. The synthesized PdAg nanoparticles (Pd64Ag36/C) showed two times higher mass activity than commercial Pd/C and good stability (retained 33% after 3,600 s) toward the electrochemical ethanol oxidation reaction due to their clean surface and alloy structure.

References

1. A. K. Choudhary and H. Pramanik, Korean J. Chem. Eng., 36, 1688 (2019).
2. G. S. Park, S. I. Mo, J. H. Kim and J. W. Yun, Korean J. Chem. Eng.,39, 1796 (2022).
3. S. H. Kim, H. J. Kim, S. K. Bhatia, R. Gurav, J. M. Jeon, J. J. Yoon, S.Kim, J. Ahn and Y. H. Yang, Korean J. Chem. Eng., 39, 2156 (2022).
4. Z. Yavari, M. S. Afarani, A. M. Arabi and M. Noroozifar, Korean J.Chem. Eng., 37, 1669 (2020).
5. S. Barati, M. M. Ghazi and B. Khoshandam, Korean J. Chem. Eng.,36, 146 (2019).
6. M. Yang, X. Lao, J. Sun, N. Ma, S. Wang, W. Ye and P. Guo, Langmuir, 36, 11094 (2020).
7. N. Ye, Z. Jiang and T. Fang, Electrochim. Acta, 352, 136473 (2020).
8. J. J. Duan, J. J. Feng, L. Zhang, J. Yuan, Q. L. Zhang and A. J. Wang,Int. J. Hydrog. Energy, 44, 27455 (2019).
9. H. Lv, Y. Wang, A. Lopes, D. Xu and B. Liu, Appl. Catal. B-Environ., 249, 116 (2019).
10. A. L. Wang, X. J. He, X. F. Lu, H. Xu, Y. X. Tong and G. R. Li, Angew.Chem. Int. Ed., 54, 3669 (2015).
11. A. R. Poerwoprajitno, L. Gloag, S. Cheong, J. J. Gooding and R. D.Tilley, Nanoscale, 11, 18995 (2019).
12. H. Q. Pham, T. T. Huynh, S. T. Nguyen, N. N. Dang and L. G. Bach,Fuel, 276, 118078 (2020).
13. Y. G. Feng, H. J. Niu, L. P. Mei, J. J. Feng, K. M. Fang and A. J. Wang,J. Colloid Interface Sci., 575, 425 (2020).
14. G. Ren, Z. Zhang, Y. Liu, Y. Liang, X. Zhang, S. Wu and J. Shen, J.Alloys Compd., 830, 154671 (2020).
15. Z. Tang, L. Zhang, S. Tang, J. Li, J. Xu, N. Li, L. Xu and J. Du, Nanomaterials, 12, 2990 (2022).
16. Z. M. Tang, L. Zhang, J. J. Du and L. J. Xu, Trans. Nonferrous Met.Soc. China, 32, 1994 (2022).
17. Y. Li and M. A. El-Sayed, J. Phys. Chem. B, 105, 8938 (2001).
18. Z. W. Guo, X. W. Kang, X. S. Zheng, J. Huang and S. W. Chen, J.Catal., 374, 101 (2019).
19. Z. Yin, D. F. Gao, S. Y. Yao, B. Zhao, F. Cai, L. L. Lin, P. Tang, P. Zhai,G. X. Wang, D. Ma and X. H. Bao, Nano Energy, 27, 35 (2016).
20. P. Jiang, W.S. Kim and T. Yu, ACS Appl. Nano Mater., 6, 1880 (2023).
21. Z. M. Tang, W. S. Kim and T. K. Yu, Chem. Eng. J., 359, 1436 (2019).
22. S. Lee, C. H. Lee and W. S. Kim, J. Cryst. Growth, 373, 32 (2013).
23. L. Liu, X. Yang, J. Yang, G. Li, Y. Guo, G. Wang and L. P. Wang, J.Taiwan Inst. Chem. Eng., 131, 104141 (2022).
24. P. Jiang, W. S. Kim and T. Yu, ACS Appl. Nano Mater., 5, 9604 (2022).
25. J. J. Lv, S. S. Li, A. J. Wang, L. P. Mei, J. J. Feng, J. R. Chen and Z. J.Chen, J. Power Sources, 269, 104 (2014).
26. X. Y. Qiu, R. P. Zhao, Y. A. Li, Y. W. Tang, D. M. Sun, S. H. Wei and T. H. Lu, RSC Adv., 4, 57144 (2014).
27. X. Yan, X. Hu, G. Fu, L. Xu, J. M. Lee and Y. Tang, Small, 14,1703940 (2018).
28. B. Hammer, Y. Morikawa and J. K. Nørskov, Phys. Rev. Lett., 76,2141 (1996).
29. W. Huang, X. Kang, C. Xu, J. Zhou, J. Deng, Y. Li and S. Cheng,Adv. Mater., 30, 1706962 (2018).
30. S. Woo, I. Kim, S. Bong, J. Lee and H. Kim, J. Nanosci. Nanotechnol., 11, 7412 (2011).
31. W. Huang, X. Kang, C. Xu, J. Zhou, J. Deng, Y. Li and S. Cheng,Adv. Mater., 30, 1706962 (2018).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로