Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 2, 2023
Revised May 15, 2023
Accepted June 9, 2023
- Acknowledgements
- This work was supported by the Korea Evaluation Institute of Industrial Technology (KEIT) through the Carbon Cluster Construction project [10083621, Development of Preparation Technology in Petroleum-Based Artificial Graphite Anode] and Technology Innovation Program [20006696, Development of isotropic graphite block for semiconductor process] funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Electrochemical property based on the structural control of pitch-based carbon anode
Abstract
The charge/discharge characteristics of a carbon anode were studied in a lithium ion battery system based
on the effects of a graphite structure developed by heat energy. A carbon precursor (pitch) was synthesized from pyrolysis of fuel oil, after which a carbonization/graphitization treatment at 1,000-2,400 o
C was carried out on the carbon
anode. The lithium storage mechanism of carbonized materials treated under 1,300 o
C was noted not by the space
between the graphite layers but the cavity in the carbon materials. This indicates higher capacity and high speed
charge-discharge performance capabilities than graphite. For graphitized materials treated at 2,400 o
C, lithium ions are
mainly inserted between the layers of the graphite, forming an interlayer structure. Based on the suggested mechanisms, it is noted that the charge/discharge of lithium ions can be controlled based on control of the graphite stru
Keywords
References
2. J. F. Peters, M. Baumann, B. Zimmermann, J. Braun and M. Weil,Renew. Sust. Energy Rev., 67, 491 (2017).
3. J. G. Kim, J. H. Kim, B. J. Song, C. W. Lee and J. S. Im, J. Ind. Eng.Chem., 36, 293 (2016).
4. J. G. Kim, J. H. Kim, B. J. Song, Y. P. Jeon, C. W. Lee, Y. S. Lee and J. S. Im, Fuel, 167, 25 (2016).
5. B. H. Kim, J. H. Kim, J. G. Kim, J. S. Im, C. W. Lee and S. Kim, J. Ind.Eng. Chem., 45, 99 (2017).
6. J. G. Kim, F. Liu, C. W. Lee, Y. S. Lee and J. S. Im, Solid State Sci.,34, 38 (2014).
7. M. Pérez, M. Granda, R. Garcia, R. Santamaría, E. Romero and R.Menéndez, J. Anal. Appl. Pyrolysis, 63, 223-239 (2002).
8. S. Huang, H. Guo, X. Li, Z. Wang, L. Gan, J. Wang and W. Xiao, J.Solid State Electrochem., 17(5), 1401 (2013).
9. S. Dong, P. Alvarez, N. Paterson, D. R. Dugwell and R. Kandiyoti,Energy Fuels, 23(3), 1651 (2009).
10. J. C. Lascovich, R. Giorgi and S. Scaglione, Appl. Surf. Sci., 47(1),17 (1991).
11. R. E. Franklin, Proc. R. Soc. Lond. A, 209(1097), 196 (1951).
12. M. Winter, J. O. Besenhard, M. E. Spahr and P. Novak, Adv. Mater.,10(10), 725 (1998).
13. J. R. Dahn, T. Zheng, Y. Liu and J. S. Xue, Science, 270(5236), 590 (1995).
14. J. Wang, J. L. Liu, Y. G. Wang, C. X. Wang and Y. Y. Xia, Electrochim.Acta, 74, 1 (2012).
15. Z. Ogumi and M. Inaba, Bull. Chem. Soc. Jpn., 71(3), 521 (1998).
16. N. A. Kaskhedikar and J. Maier, Adv. Mater., 21(25‐26), 2664 (2009).
17. A. Mabuchi, K. Tokumitsu, H. Fujimoto and T. Kasuh, J. Electrochem. Soc., 142(4), 1041 (1995).
18. O. Fromm, A. Heckmann, U. C. Rodehorst, J. Frerichs, D. Becker,M. Winter and T. Placke, Carbon, 128, 147 (2018).
19. B. Manoj and A. G. Kunjomana, Int. J. Electrochem. Sci., 7(4), 3127 (2012).
20. N. S. Saenko, Phys. Procedia, 23, 102 (2012).
21. M. D. Awitdrus, I. A. Talib, R. Omar, M. H. H. Jumali, E. Taer and M. M. Saman, Sains Malaysiana, 39(1), 83 (2010).
22. C. N. Barnakov, G. P. Khokhlova, A. N. Popova, S. A. Sozinov and Z. R. Ismagilov, Eurasian Chemico-Technological J., 17(2), 87 (2015).
23. Y. J. Han, D. Chung, K. Nakabayashi, J. D. Chung, J. Miyawaki and S. H. Yoon, Electrochim. Acta, 213, 432 (2016).
24. S. Flandrois and B. Simon, Carbon, 37, 165 (1999).
25. B. Xing, C. Zhang, Y. Cao, G. Huang, Q. Liu, C. Zhang, Z. Chen,G. Yi, L. Chen and J. Yu, Fuel Process. Technol., 172, 162 (2018).
26. J. U. Hwang and J. D. Lee, Korea Chem. Eng. Res., 55(3), 307 (2017).
27. L. Ji, Z. Lin, M. Alcoutlabi and X. Zhang, Energy Environ. Sci.,4(8), 2682 (2011).
28. K. Tokumitsu, H. Fujimoto, A. Mabuchi and T. Kasuh, Carbon,37(10), 1599 (1999).
29. H. Kim, W. Choi, J. Yoon, J. H. Um, W. Lee, J. Kim, J. Cabana and W.-S. Yoon, Chem. Rev., 120(14), 6934 (2020).
30. C. W. Park and S. M. Oh, J. Korean Electrochem. Soc., 2(4), 221 (1999).
31. S. E. Lee, J. H. Kim, Y. S. Lee, B. C. Bai and J. S. Im, Carbon Lett.,31, 911 (2021)