ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 2, 2023
Revised May 15, 2023
Accepted June 9, 2023
Acknowledgements
This work was supported by the Korea Evaluation Institute of Industrial Technology (KEIT) through the Carbon Cluster Construction project [10083621, Development of Preparation Technology in Petroleum-Based Artificial Graphite Anode] and Technology Innovation Program [20006696, Development of isotropic graphite block for semiconductor process] funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Electrochemical property based on the structural control of pitch-based carbon anode

1C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea 2Department of Chemical Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk 28644, Korea 3Advanced Materials and Chemical Engineering, University of Science and Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
jsim@krict.re.kr, jdlee@chungbuk.ac.kr
Korean Journal of Chemical Engineering, September 2023, 40(9), 2165-2173(9),
downloadDownload PDF

Abstract

The charge/discharge characteristics of a carbon anode were studied in a lithium ion battery system based on the effects of a graphite structure developed by heat energy. A carbon precursor (pitch) was synthesized from pyrolysis of fuel oil, after which a carbonization/graphitization treatment at 1,000-2,400 o C was carried out on the carbon anode. The lithium storage mechanism of carbonized materials treated under 1,300 o C was noted not by the space between the graphite layers but the cavity in the carbon materials. This indicates higher capacity and high speed charge-discharge performance capabilities than graphite. For graphitized materials treated at 2,400 o C, lithium ions are mainly inserted between the layers of the graphite, forming an interlayer structure. Based on the suggested mechanisms, it is noted that the charge/discharge of lithium ions can be controlled based on control of the graphite stru

References

1. B. H. Kim, J. H. Kim, J. G. Kim, M. J. Bae, J. S. Im, C. W. Lee and S.Kim, J. Ind. Eng. Chem., 41, 1 (2016).
2. J. F. Peters, M. Baumann, B. Zimmermann, J. Braun and M. Weil,Renew. Sust. Energy Rev., 67, 491 (2017).
3. J. G. Kim, J. H. Kim, B. J. Song, C. W. Lee and J. S. Im, J. Ind. Eng.Chem., 36, 293 (2016).
4. J. G. Kim, J. H. Kim, B. J. Song, Y. P. Jeon, C. W. Lee, Y. S. Lee and J. S. Im, Fuel, 167, 25 (2016).
5. B. H. Kim, J. H. Kim, J. G. Kim, J. S. Im, C. W. Lee and S. Kim, J. Ind.Eng. Chem., 45, 99 (2017).
6. J. G. Kim, F. Liu, C. W. Lee, Y. S. Lee and J. S. Im, Solid State Sci.,34, 38 (2014).
7. M. Pérez, M. Granda, R. Garcia, R. Santamaría, E. Romero and R.Menéndez, J. Anal. Appl. Pyrolysis, 63, 223-239 (2002).
8. S. Huang, H. Guo, X. Li, Z. Wang, L. Gan, J. Wang and W. Xiao, J.Solid State Electrochem., 17(5), 1401 (2013).
9. S. Dong, P. Alvarez, N. Paterson, D. R. Dugwell and R. Kandiyoti,Energy Fuels, 23(3), 1651 (2009).
10. J. C. Lascovich, R. Giorgi and S. Scaglione, Appl. Surf. Sci., 47(1),17 (1991).
11. R. E. Franklin, Proc. R. Soc. Lond. A, 209(1097), 196 (1951).
12. M. Winter, J. O. Besenhard, M. E. Spahr and P. Novak, Adv. Mater.,10(10), 725 (1998).
13. J. R. Dahn, T. Zheng, Y. Liu and J. S. Xue, Science, 270(5236), 590 (1995).
14. J. Wang, J. L. Liu, Y. G. Wang, C. X. Wang and Y. Y. Xia, Electrochim.Acta, 74, 1 (2012).
15. Z. Ogumi and M. Inaba, Bull. Chem. Soc. Jpn., 71(3), 521 (1998).
16. N. A. Kaskhedikar and J. Maier, Adv. Mater., 21(25‐26), 2664 (2009).
17. A. Mabuchi, K. Tokumitsu, H. Fujimoto and T. Kasuh, J. Electrochem. Soc., 142(4), 1041 (1995).
18. O. Fromm, A. Heckmann, U. C. Rodehorst, J. Frerichs, D. Becker,M. Winter and T. Placke, Carbon, 128, 147 (2018).
19. B. Manoj and A. G. Kunjomana, Int. J. Electrochem. Sci., 7(4), 3127 (2012).
20. N. S. Saenko, Phys. Procedia, 23, 102 (2012).
21. M. D. Awitdrus, I. A. Talib, R. Omar, M. H. H. Jumali, E. Taer and M. M. Saman, Sains Malaysiana, 39(1), 83 (2010).
22. C. N. Barnakov, G. P. Khokhlova, A. N. Popova, S. A. Sozinov and Z. R. Ismagilov, Eurasian Chemico-Technological J., 17(2), 87 (2015).
23. Y. J. Han, D. Chung, K. Nakabayashi, J. D. Chung, J. Miyawaki and S. H. Yoon, Electrochim. Acta, 213, 432 (2016).
24. S. Flandrois and B. Simon, Carbon, 37, 165 (1999).
25. B. Xing, C. Zhang, Y. Cao, G. Huang, Q. Liu, C. Zhang, Z. Chen,G. Yi, L. Chen and J. Yu, Fuel Process. Technol., 172, 162 (2018).
26. J. U. Hwang and J. D. Lee, Korea Chem. Eng. Res., 55(3), 307 (2017).
27. L. Ji, Z. Lin, M. Alcoutlabi and X. Zhang, Energy Environ. Sci.,4(8), 2682 (2011).
28. K. Tokumitsu, H. Fujimoto, A. Mabuchi and T. Kasuh, Carbon,37(10), 1599 (1999).
29. H. Kim, W. Choi, J. Yoon, J. H. Um, W. Lee, J. Kim, J. Cabana and W.-S. Yoon, Chem. Rev., 120(14), 6934 (2020).
30. C. W. Park and S. M. Oh, J. Korean Electrochem. Soc., 2(4), 221 (1999).
31. S. E. Lee, J. H. Kim, Y. S. Lee, B. C. Bai and J. S. Im, Carbon Lett.,31, 911 (2021)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로