ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 11, 2022
Revised March 13, 2023
Accepted March 25, 2023
Acknowledgements
The authors express their great appreciation for the financial support of this project by the National Natural Science Foundation of China (51676081), Wuhan Enterprise Technology Innovation Projects (2019020702011359; 2020020602012150), and the 111 Project B17019. Additionally, the authors would like to thank the Shiyanjia Lab (www.shiyanjia.com) for the support of SEM and NH3- TPD tests.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Hydrogen production by catalytic steam reforming of waste cooking oil over La-Ni/ZSM-5 catalyst

Chemistry College, Central China of Normal University, Wuhan 430079, China
wuzs@ccnu.edu.cn
Korean Journal of Chemical Engineering, September 2023, 40(9), 2174-2186(13), 10.1007/s11814-023-1459-2
downloadDownload PDF

Abstract

Ni/ZSM-5 catalyst is one of the promising catalysts to improve the catalytic steam reforming of waste cooking oil (WCO) for hydrogen production. Furthermore, the introduction of lanthanum (La) plays a huge role in inhibiting metal sintering and carbon deposition and improving the stability and activity of the catalyst. This study investigated the effects of reaction temperature (600-800 o C), steam to carbon molar ratio (S/C), n Ni/ZSM-5 (n=5, 10, and 15 wt%), and the addition of promoter (La) on the experimentally generated hydrogen yield and carbon deposition. Results showed that the experiment used 6 wt% La-10 wt% Ni/ZSM-5 at 0.1 MPa, 700 o C, space-time ()=0.56 gcatalysth/gWCO, and S/C=5.25, which obtained the yield of H2 was 154.12 mol/kg, carbon deposition was 5.38%. Therefore, Ni-modified catalyst added La to improve the catalyst coking resistance and prevent carbon formation. Moreover, La can further promote the dispersion of nickel on the surface of the carrier and improve the catalytic performance of the catalyst for steam reforming reaction.

References

1. X. Dupain, D. J. Costa, C. J. Schaverien, M. Makkee and J. A. Moulijn, Appl. Catal. B: Environ., 72, 44 (2007).
2. S. Nanda, R. Rana, H.N. Hunter, Z. Fang, A.K. Dalai and J.A. Kozinski, Chem. Eng. Sci., 195, 935 (2019).
3. G. M. Allen, Dover Publications, Mineola, N.Y. (2004).
4. C. Rioche, S. Kulkarni, F. C. Meunier, J. P. Breen and R. Burch, Appl.Catal. B: Environ., 61, 130 (2005).
5. P. Fu, W. Yi, Z. Li, X. Bai, A. Zhang, Y. Li and Z. Li, Int. J. Hydrogen Energy, 39, 13962 (2014).
6. H. Xie, Q. Yu, X. Yao, W. Duan, Z. Zuo and Q. Qin, J. Energy Chem.,24, 299 (2015).
7. H. D. Setiabudi, M. A. A. Aziz, S. Abdullah, L. P. Teh and R. Jusoh,Int. J. Hydrogen Energy, 45, 18376 (2020).
8. C. G. Vayenas, J. Catal., 134, 755 (1992).
9. I. N. Buffoni, F. Pompeo, G. F. Santori and N. N. Nichio, Catal. Commun., 10, 1656 (2009).
10. N. Goyal, K. K. Pant and R. Gupta, Int. J. Hydrogen Energy, 38, 921 (2013).
11. J. Chen, J. Sun and Y. Wang, Ind. Eng. Chem. Res., 56, 4627 (2017).
12. B. Yan, W. Li, J. Tao, N. Xu, X. Li and G. Chen, Int. J. Hydrogen Energy, 42, 6674 (2017).
13. A. Awadallah, A. Aboul-Enein and A. Aboul-Gheit, Renew. Energy,57, 671 (2013).
14. N. Gutta, V. K. Velisoju, A. Chatla, V. Boosa, J. Tardio, J. Patel and V. Akula, Energy Fuels, 32, 4008 (2018).
15. X. Zhao, K. Wu, W. Liao, Y. Wang, X. Hou, M. Jin, Z. Suo and H.Ge, Green Energy Environ., 4, 300 (2019).
16. S. Zhou, Z. Chen, H. Gong, X. Wang, T. Zhu and Y. Zhou, Appl.Catal. A: Gen., 607, 117859 (2020).
17. R. S. Tan, T. A. Tuan Abdullah, A. Ripin, A. Ahmad and K. Md Isa,J. Environ. Chem. Eng., 7, 103490 (2019).
18. X. Li, D. Li, H. Tian, L. Zeng, Z.-J. Zhao and J. Gong, Appl. Catal.B: Environ., 202, 683 (2017).
19. S. Adamu, H. Binous, S. A. Razzak and M. M. Hossain, Renew.Energy, 111, 399 (2017).
20. M. B. I. Chowdhury, M. Z. Hossain, J. Mazumder, A. K. Jhawar and P. A. Charpentier, Fuel, 217, 166 (2018).
21. M. Boudjeloud, A. Boulahouache, C. Rabia and N. Salhi, Int. J.Hydrogen Energy, 44, 9906 (2019).
22. H. Lu, X. Yang, G. Gao, J. Wang, C. Han, X. Liang, C. Li, Y. Li, W.Zhang and X. Chen, Fuel, 183, 335 (2016).
23. A.A. Abdulrasheed, A.A. Jalil, M.Y.S. Hamid, T.J. Siang and T.A.T.Abdullah, J. CO2 Util., 37, 230 (2020).
24. P. Osorio-Vargas, N. A. Flores-González, R. M. Navarro, J. L. G.Fierro, C. H. Campos and P. Reyes, Catal. Today, 259, 27 (2016).
25. E. Kok, J. Scott, N. Cant and D. Trimm, Catal. Today, 164, 297 (2011).
26. M. Chen, X. Li, Y. Wang, C. Wang, T. Liang, H. Zhang, Z. Yang, Z.Zhou and J. Wang, Energy Conv. Manage., 184, 315 (2019).
27. Z. Li, Z. Zhong, B. Zhang, W. Wang and W. Wu, J. Anal. Appl. Pyrolysis, 138, 103 (2019).
28. Y. Li, Nishu, D. Yellezuome, M. Chai, C. Li and R. Liu, J. Energy Inst., 99, 218 (2021).
29. Y. Wang, C. Wang, M. Chen, J. Hu, Z. Tang, D. Liang, W. Cheng, Z.Yang, J. Wang and H. Zhang, Fuel, 279, 118449 (2020).
30. M. Chen, D. Liang, Y. Wang, C. Wang, Z. Tang, C. Li, J. Hu, W.Cheng, Z. Yang, H. Zhang and J. Wang, Int. J. Hydrogen Energy, 46,21796 (2021).
31. Nishu, C. Li, M. Chai, M. M. Rahman, Y. Li, M. Sarker and R. Liu,Renew. Energy, 175, 936 (2021).
32. S. S. Vieira, Z. M. Magriotis, I. Graça, A. Fernandes, M. F. Ribeiro,J. M. F. M. Lopes, S. M. Coelho, N. A. V. Santos and A. A. Saczk,Catal. Today, 279, 267 (2017).
33. R. Yang, C. Xing, C. Lv, L. Shi and N. Tsubaki, Appl. Catal.s A: Gen.,385, 92 (2010).
34. H. Su, E. Kanchanatip, D. Wang, H. Zhang, Antoni, I. Mubeen, Z Huang and M. Yan, Int. J. Hydrogen Energy, 45, 553 (2020).
35. H. Lorenz, S. Turner, O. I. Lebedev, G. Van Tendeloo, B. Klötzer,C. Rameshan, K. Pfaller and S. Penner, Appl. Catal. A: Gen., 374,180 (2010).
36. Z. Li, X. Yang, Y. Han and L. Rong, Int. J. Hydrogen Energy, 45,21364 (2020).
37. L. N. Jun, M. B. Bahari, H. D. Setiabudi, A. A. Jalil and D.-V. N. Vo,Process Saf. Environ. Prot., 150, 356 (2021).
38. T. Pan, S. Ge, M. Yu, Y. Ju, R. Zhang, P. Wu, K. Zhou and Z. Wu,Fuel, 311, 122629 (2022).
39. Y. Zheng, F. Wang, X. Yang, Y. Huang, C. Liu, Z. Zheng and J. Gu,J. Anal. Appl. Pyrolysis, 126, 169 (2017).
40. J. Zhang, M. Ren, X. Li, Q. Hao, H. Chen and X. Ma, Energy Conv.Manage., 205, 112419 (2020).
41. S. S. Miri, F. Meshkani, A. Rastegarpanah and M. Rezaei, Chem.Eng. Sci., 250, 116956 (2022).
42. T. A. Le, Q. C. Do, Y. Kim, T.-W. Kim and H.-J. Chae, Korean J.Chem. Eng., 38, 1087 (2021).
43. Z. Hao, Q. Zhu, Z. Jiang, B. Hou and H. Li, Fuel Process. Technol.,90, 113 (2009).
44. A. Kostyniuk, D. Bajec and B. Likozar, Renew. Energy, 167, 409 (2021).
45. P. Feng, K. Huang, Q. Xu, W. Qi, S. Xin, T. Wei, L. Liao and Y. Yan,Int. J. Hydrogen Energy, 45, 8223 (2020).
46. L. Chen, H. Li, J. Fu, C. Miao, P. Lv and Z. Yuan, Catal. Today, 259,266 (2016).
47. S. Pinjari, M. K. Kumaravelan, V. C. Peddy, S. Gandham, J. Patruni,S. Velluru and P. Kumar, Int. J. Hydrogen Energy, 43, 2781 (2018).
48. R. Tian, S.-y. Wang, C.-s. Lian, X. Wu, X. An and X.-m. Xie, J. Fuel Chem. Technol., 47, 1476 (2019).
49. Z. Niazi, A. Irankhah, Y. Wang and H. Arandiyan, Int. J. Hydrogen Energy, 45, 21512 (2020).
50. Y. Sugi, Y. Kubota, K. Komura, N. Sugiyama, M. Hayashi, J. H. Kim and G. Seo, Appl. Catal. A: Gen., 299, 157 (2006).
51. K. Ding, A. He, D. Zhong, L. Fan, S. Liu, Y. Wang, Y. Liu, P. Chen, H. Lei and R. Ruan, Bioresour. Technol., 268, 1 (2018).
52. M. Li, S. Xing, L. Yang, J. Fu, P. Lv, Z. Wang and Z. Yuan, Appl.Catal. A: Gen., 587, 117112 (2019).
53. X. Zhang, H. Lei, G. Yadavalli, L. Zhu, Y. Wei and Y. Liu, Fuel, 144,33 (2015).
54. X. Li, B. Li, J. Xu, Q. Wang, X. Pang, X. Gao, Z. Zhou and J. Piao,Appl. Clay Sci., 50, 81 (2010).
55. L. Fan, R. Ruan, J. Li, L. Ma, C. Wang and W. Zhou, Appl. Energy,263, 114629 (2020).
56. F. Li, S. Ding, Z. Wang, Z. Li, L. Li, C. Gao, Z. Zhong, H. Lin and C. Chen, Energy Fuels, 32, 5910 (2018).
57. J. Xu and G. F. Froment, AIChE J., 35, 88 (1989).
58. N. Kaisalo, P. Simell and J. Lehtonen, Fuel, 182, 696 (2016).
59. M. Koike, D. Li, H. Watanabe, Y. Nakagawa and K. Tomishige,Appl. Catal. A: Gen., 506, 151 (2015).
60. S. C. Srivatsa, F. Li and S. Bhattacharya, Renew. Energy, 142, 426 (2019).
61. G.-Q. Wei, W.-N. Zhao, J.-G. Meng, J. Feng, W.-Y. Li, F. He, Z.Huang, Q. Yi, Z.-Y. Du, K. Zhao, Z.-L. Zhao and H.-B. Li, J. Clean.Prod., 200, 588 (2018).
62. L. Qian, Z. Ma, Y. Ren, H. Shi, B. Yue, S. Feng, J. Shen and S. Xie,Fuel, 122, 47 (2014).
63. H. Su, E. Kanchanatip, D. Wang, H. Zhang, Antoni, I. Mubeen, Z.Huang and M. Yan, Int. J. Hydrogen Energy, 45, 553 (2020).
64. W. Liu and H. Yuan, Int. J. Energy Res., 44, 11564 (2020).
65. F. Fayaz, B. Long Giang, M. B. Bahari, N. Trinh Duy, B. V. Khanh,R. Kanthasamy, C. Samart, N.-H. Chinh and D.-V. N. Vo, Int. J.Energy Res., 43, 405 (2019).
66. K.-H. Lin, C.-B. Wang and S.-H. Chien, Int. J. Hydrogen Energy,38, 3226 (2013).
67. K. W. Siew, H. C. Lee, J. Gimbun and C. K. Cheng, Int. J. Hydrogen Energy, 39, 6927 (2014).
68. L. N. Jun, M. B. Bahari, H. D. Setiabudi, A. A. Jalil and D.-V. N. Vo,Process Saf. Environ. Prot., 150, 356 (2021).
69. T. Bai, X. Zhang, F. Wang, W. Qu, X. Liu and C. Duan, J. Energy Chem., 25, 545 (2016).
70. Y. Ni, A. Sun, X. Wu, G. Hai, J. Hu, T. Li and G. Li, J. Colloid Interface Sci., 361, 521 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로