Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 27, 2022
Revised December 21, 2022
Accepted January 31, 2023
- Acknowledgements
- This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1A2C2006888).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Anticorrosive efficiency and adsorption characteristics of natural plant gums on mild steel exposed to the Diesel/Saline water biphasic system
Abstract
Metallic equipment and structures that come in contact with a variety of petroleum products, solvents,
water, the atmosphere, and soil in the oil and gas industry are highly prone to a range of corrosion phenomena, which
escalate the risk of serious accidents. The use of green corrosion inhibitors in oil and gas can significantly reduce the
maintenance and service costs. This study focuses on the anti-corrosive behavior of natural exudate gums, such as Azadirachta indica (G1), Moringa oleifera (G2), Prosopis juliflora (G3) and Prunus dulcis (G4). These gums were evaluated
as corrosion inhibitors on mild steel against the diesel/saline water biphasic system by the weight loss method and electrochemical techniques. The inhibition efficiency was high at 93.86, 95.75, 92.42, and 90.02% at the highest tested concentration (5,000 ppm) for the gums G1, G2, G3, and G4, respectively. Among the investigated natural gums, the
lowest corrosion rate (29.36 mm yr1
) and highest inhibition efficiency (95.75%) were achieved with Moringa oleifera
(G2) at 5,000 ppm. The activation energy of the corrosion inhibition process (4.00-38 kJmol1
) was higher than that of
the uninhibited system (1.8 kJmol1
), indicating that the inhibited systems possessed higher energy barriers and followed the Langmuir adsorption process. Our corrosion test results validate that the Moringa oleifera gum can serve as
an effective eco-friendly corrosion inhibitor for mild steel in the biphasic system of diesel/saline water.
References
2. C. Chandrasatheesh and J. Jayapriya, Biocorrosion. In Bioelectrochemical Interface Engineering, In: R. N. Krishnaraj, R. K. Sani Eds., John Wiley & Sons, Inc. NJ (2020).
3. H. El Hajj, A. Abdelouas, Y. El Mendili, G. Karakurt, B. Grambow and C. Martin, Corrosion Sci., 76, 432 (2013).
4. M. Iannuzzi, A. Barnoush and R. Johnsen, npj Mater. Degrad, 1, 2 (2017).
5. P. Badida,Y. Balasubramaniam and J. Jayaprakash, J. Nat. Gas Sci.Eng., 66, 284 (2019).
6. U. Unueroh, G. Omonria, O. Efosa and M. Awotunde, Niger. J.Technol., 35, 317 (2016).
7. D. M. Frazaõ, I. R. De Melo, M. R. S. Vieira and S. L. U. Filho, Mater.Res., 22, 1 (2019).
8. K. M. Usher, A. H. Kaksonen, I. Cole and D. Marney, Int. Biodeterior. Biodegrad., 93, 84 (2014).
9. J. S. Lee, R. I. Ray and B. J. Little, NACE International, NACE-10074,San Antonio, Texas (2010).
10. A. H. Al-Moubaraki and I. B. Obot, J. Saudi Chem. Soc., 25, 101370 (2021).
11. P. Topilnitskij, Chem. Chem. Technol., 1, 45 (2007).
12. B. D. B. Tiu and R. C. Advincula, React. Funct. Polym., 95, 25 (2015).
13. N. A. Odewunmi, M. M. Solomon, S. A. Umoren and S. A. Ali, ACS Omega, 5, 27057 (2020).
14. N. R. Vaidya, P. Aklujkar and A. R. Rao, J. Coat. Technol. Res., 19,223 (2022).
15. M. Mobin, M. Rizvi, L. O. Olasunkanmi and E. E. Ebenso, ACS Omega, 2, 3997 (2017).
16. M. Abdallah, Portugaliae Electrochim. Acta, 22, 161 (2004).
17. P. Roy, P. Karfa, U. Adhikari and D. Sukul, Corrosion Sci., 88, 246 (2014).
18. S. A. Umoren and U. F. Ekanem, Chem. Eng. Commun., 197, 1339 (2010).
19. S. A. Umoren and E. E. Ebenso, Pigment Resin Technol., 37, 173 (2008).
20. A. A. Dalhatu, A. I. Sani, B. S. Sani and D. N. Sani, Int. Res. J. Pure Appl. Chem., 17, 1 (2019).
21. B. Thirumalairaj and M. Jaganathan, Egyptian J. Pet., 25, 423 (2016).
22. J. C. da Rocha, J. A. C. P. Gomes and E. D’Elia, Mater. Res., 17,1581 (2014).
23. G. Palumbo, K. Berent, E. Proniewicz and J. Banaś, Materials (Basel),12, 2620 (2019).
24. P. Kumari and M. Lavanya, J. Bio- and Tribo-Corrosion, 7, 110 (2021).
25. S. Bashir, A. Thakur, H. Lgaz, I.-M. Chung and A. Kumar, Surf.Interfaces, 20, 100542 (2020).
26. M. Messali, H. Lgaz, R. Dassanayake, R. Salghi, S. Jodeh, N. Abidi and O. Hamed, J. Mol. Struct., 1145, 43 (2017).
27. O. A. Akinbulumo, O. J. Odejobi and E. L. Odekanle, Results in Mater., 5, 100074 (2020).
28. F. El-Hajjaji, I. Merimi, L. El Ouasif, M. El Ghoul, R. Achour, B.Hammouti, M. E. Belghiti, D. S. Chauhan and M. A. Quraishi, Port.Electrochim. Acta, 37, 131 (2019).
29. P. Singh, D. S. Chauhan, K. Srivastava, V. Srivastava and M. A.Quraishi, Int. J. Ind. Chem., 8, 363 (2017).
30. A. Rezaei, A. Nasirpour and H. Tavanai, Food Hydrocolls, 60, 461 (2016).
31. D. Mudgil, S. Barak and B. S. Khatkar, Int. J. Biol. Macromol., 50,1035 (2012).
32. P. D. Vasko, J. Blackwell and J. L. Koenig, Carbohydr. Res., 23, 407 (1972).
33. A. R. Rezaierod, A. R. Rahimi and M. Chaghazardi, Anal. Bioanal.Electrochem., 6, 657 (2014).
34. K. Azzaoui, E. Mejdoubi, S. Jodeh, A. Lamhamdi, E. RodriguezCastellón, M. Algarra, A. Zarrouk, A. Errich, R. Salghi and H. Lgaz,Corrosion Sci., 129, 70 (2017).
35. M. Manickam, D. Sivakumar, B. Thirumalairaj and M. Jaganathan,Adv. Phys. Chem., 2016, 1 (2016).
36. M. Abdallah, Portugaliae Electrochim. Acta, 22, 161 (2004).
37. M. Manickam, M. Jaganathan and D. Sivakumar, Int. J. Innovative Sci. Res. Technol., 2, 8 (2017).
38. A. Biswas, S. Pal and G. Udayabhanu, Appl. Surf. Sci., 353, 173 (2015).
39. G. Palumbo, K. Berent, E. Proniewicz, J. Banaś, Materials (Basel),12, 16 (2019)