ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 16, 2022
Revised November 19, 2022
Accepted November 23, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Rhodamine B dye degradation by fabricated Ti/RuO2 anode: Optimization by RSM, reaction mechanism, study of sludge

Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
shishir@ch.iitr.ac.in
Korean Journal of Chemical Engineering, September 2023, 40(9), 2219-223(-1995), 10.1007/s11814-022-1355-1
downloadDownload PDF

Abstract

Textile wastewater was treated by an electrochemical process using Ti/RuO2 as anode and stainless steel as a cathode. Textile wastewater contains harmful dyes that can be broken down into simpler products like CO2 and H2O using the electro-oxidation process. For this process, a dimensional stable anode (Ti/RuO2) was fabricated using sol-gel method. Apreo field emission scanning electron microscopy (FE-SEM) with energy dispersed x-ray (EDX), atomic force microscopy (AFM), X-ray diffraction (XRD) has been done to study their characteristics. Design expert software was used to optimize the parameters using response surface methodology. Response parameters such as pH (2-10), current (0.5-2 A), initial concentration (50-200 mg/L), and time (2-15 min) were varied, and 30 sets of experiments were designed. The optimized value obtained for maximizing the dye degradation percentage and COD removal percentage is at initial pH of 3.3, current of 0.5 A, initial concentration of 50 mg/L, and time of 9.4 min for dye degradation of 99.82%, COD removal of 82.50% removal, and 1.81 kWh/m3 energy consumption (minimum) keeping 0.2 M NaCl electrolyte as constant. Kinetic study shows that the reaction is first order. The mechanism of the process was also studied using UPLC-QTOF. The total cost of the process was found to be ₹582.79 or $7.68. Characterization of the sludge was also done to check its reusability

References

1. D. A. Yaseen and M. Scholz, Int. J. Environ. Sci. Technol., 16, 1193 (2019).
2. T. Jiao, H. Zhao, J. Zhou,Q. Zhang, X. Luo, J. Hu,Q. Peng and X. Yan, ACS Sust. Chem. Eng., 12, 3 (2015).
3. J. Ma, M. Zhang, M. Ji, L. Zhang, Z. Qin, Y. Zhang, L. Gao and T. Jiao, Int. J. Biol. Macromol., 193, 2221 (2021).
4. J. Yin, F. Zhan, T. Jiao, H. Deng, G. Zou, Z. Bai, Q. Zhang and Q. Peng, Chin. Chem. Lett., 31, 4 (2020).
5. A. G. Vlyssides, D. Papaioannou, M. Loizidoy, P. K. Karlis and A. A. Zorpas, Waste Manage., 20, 7 (2000).
6. J. Iniesta, E. Exposito, J. Gonzalez-Garcıa, V. Montiel and A. Aldaz, J. Electrochem. Soc., 149, 5 (2002).
7. C. Barrera-Diaz, G. Roa-Morales, L. Avila-Cordoba, T. Pavon-Silva and B. Bilyeu, Ind. Eng. Chem. Res., 45, 34 (2006).
8. C. R. Costa, C. M. R. Botta, E. L. G. Espindola and P. Olivi, J. Hazard. Mater., 153, 616 (2008).
9. D. Xu, Y. Li, L. Yin, Y. Ji, J. Niu and Y. Yu, Front. Environ. Sci. Eng.,12, 1 (2018).
10. L. Zhang, K. Wei, J. Ma, J. Wang, Z. Liu, R. Xing and T. Jiao, Appl.Surf. Sci., 566, 150754 (2021).
11. S. Zhu, L. Fan and Y. Lu, RSC Adv., 7, 59939 (2017).
12. C. K. Caraújo, G.R. Oliveira, N.S. Fernandes, C. L. P. S. Zanta, S. S. L.Castro, D. R. da Silva and C. A. Martínez-Huitle, Environ. Sci. Pollut. Res., 21, 16 (2014).
13. N. Jiang, Q. Zhao, Y. Xue, W. Xu and Z. Ye, J. Clean. Prod., 188,732 (2018).
14. A. M. S. Polcaro, S. Palmas, F. Renoldi and M. Mascia, J. Appl. Electrochem., 29, 2 (1999).
15. L. Zhang, L. Xu, J. He and J. Zhang, Electrochim. Acta, 117, 192 (2014).
16. M. Ghazouani, L. Bousselmi and H. Akrout, J. Environ. Chem. Eng.,8, 104509 (2020).
17. A. J. Terezo and E. CPereira, Mater. Lett., 53 339 (2002).
18. A. Majedi, A. Abbasi and F. Davar, J. Sol Gel Sci. Technol., 77, 543 (2016).
19. S. Varala, V. Ravisankar, M. Al-Ali, M. I. Pownceby, R. Parthasarathy and S. K. Bhargava, Chemosphere, 237, 124488 (2019).
20. K. Y. Nandiwale and V. V. Bokade, Ind. Eng. Chem. Res., 53, 18690 (2014).
21. E. Raissi and R. E. Farsani, World Acad. Sci., Eng. Technol., 39, 280 (2009).
22. K. Y. Nandiwale, A. M. Pande and V. V. Bokade, RSC Adv., 5, 22 (2015).
23. M. Abdulgader, Q. JimmyYu, A. A. Zinatizadeh, P. Williams and Z.Rahimi, J. Environ. Chem. Eng., 8, 3 (2020).
24. K. Wang, Y. Mao, C. Wang, Q. Ke and M. Zhao, Environ. Sci. Pollut. Res., 29, 36075 (2022).
25. M. Menon and N. Pryds, Adv. Energy Mater., 205, 5 (2008).
26. F. A. Rodríguez, E. P. Rivero and I. González, MethodsX, 5, 1613 (2018).
27. R. F. Yunus, Y. Zheng, K. G. N. Nanayakkara and J. P. Chen, Ind.Eng. Chem. Res., 48, 16 (2009).
28. I. S. AL-Jobouri, S. A. Dhahir and K. A. AL-Saade, Am. J. Environ.Sci., 9, 3 (2013).
29. R. W. Ricci, M. A. Ditzler Robert and L. P. Nestor, J. Chem. Educ.,71, 983 (1994).
30. A. Goyal, V. C. Srivastava and J. P. Kushwaha, Chem. Eng. J., 325,289 (2017).
31. R. Chauhan, V. C. Srivastava and A. D. Hiwarkar, J. Taiwan Inst.Chem. Eng., 69, 106 (2016).
32. R. Chauhan and V. C. Srivastava, Chem. Eng. J., 386, 3 (2020).
33. H. Ajab, M. Hasnain and A. Yaqub, Sust. Mater. Technol., 26, e00225 (2020).
34. R. G. Freitas, L. F. Marchesi, R. T. S. Oliveira, F. I. Mattos-Costa, E. C. Pereira, L. O. S. Bulhões and M. C. Santos, J. Power Sources, 171, 2 (2007).
5. E. Palma-Goyes, J. Vazquez-Arenas, C. Ostos, F. Ferraro, R. A. Torres-Palma and I. Gonzalez, Electrochim. Acta, 213, 740 (2016).
36. R. Dixit and C. B. Majumder, J. CO2 Util., 26, 80 (2018).
37. K. Rokosz, T. Hryniewicz and S. Raaen, Tehnicki Vjesnik, 22, 1 (2015).
38. E. A. Paoli, F. Masini, R. Frydendal, D. Deiana, C. Schlaup, M. Malizia, T. W. Hansen, S. Horch, I. E. L. Stephens and I. Chorkendorff,Chem. Sci., 6, 190 (2015).
39. I. M. D. Gonzaga, A. R. Dória, V. M. Vasconcelos, F. M. Souza, M. C.dos Santos, P. Hammer, M. A. Rodrigo, K. I. B. Eguiluz and G. R.Salazar-Banda, J. Electroanal. Chem., 874, 114460 (2020).
40. S. J. Han, J. H. Song, J. Yoo, S. Park, K. H. Kang and I. K. Song, Int.J. Hydrogen Energy, 42, 5886 (2017).
41. J. J. Pietron, M. B. Pomfret, C. N. Chervin, J. W. Long and D. R.Rolison, J. Mater. Chem., 22, 5197 (2012).
42. J. Zhou, T. Wang, C. Cheng, F. Pan, Y. Zhu, H. Ma and J. Niu,Nanoscale, 14, 3579 (2022).
43. A. Kumar and B. Prasad, Sep. Purif. Technol., 279, 119677 (2021).
44. J. Zhou, T. Wang, C. Cheng, F. Pan, Y. Zhu, H. Ma and J. Niu,Nanoscale, 14, 9 (2022).
45. M. Ahmadi, F. Vahabzadeh, B. Bonakdarpour, E. Mofarrah and M. Mehranian, J. Hazard. Mater., 123, 18795 (2005).
46. P. A. J. Rosa, A. M. Azevedo and M. R. Aires-Barros, J. Chromatogr.A, 1141, 1 (2007).
47. Y. Hang, M. Qu and S. Ukkusuri, Energy Build., 43, 4 (2011).
48. R. Ghelich, M. R. Jahannama, H. Abdizadeh, F. S. Torknik and M. R.Vaezi, Compos. Part B: Eng., 166, 527 (2019).
49. M. Kumari and S. K. Gupta, Sci. Rep., 9 (2019).
50. D. S. Ken and A. Sinha, J. Environ. Chem. Eng., 9, 1 (2021).
51. G. Villafane V. Bazán, E. Brandalez, A. López, P. Pacheco and A.Maratta, Talanta Open, 6, 100149 (2022).
52. M. Tripathi, A. Bhatnagar, N. M. Mubarak, J. N. Sahu and P. Ganesan, Fuel, 277, 118184 (2020).
53. R. E. Palma-Goyes, F. L. Guzmán-Duque, G. Peñuela, I. González,J. L. Nava and R. A. Torres-Palma, Chemosphere, 81, 1 (2010).
54. H. Ma, B. Wang and X. Luo, J. Hazard. Mater., 149, 2 (2007).
55. E. Chatzisymeon, N. P. Xekoukoulotakis, A. Coz, N. Kalogerakis and D. Mantzavinos, J. Hazard. Mater., 137, 2 (2006).
56. D. Ozturk, E. Dagdas, B. Ali Fil and M. J. K. Bashir, Environ. Technol. Innov., 21, 101264 (2021).
57. A. Sánchez-Sánchez, M. Tejocote-Pérez, R. M. Fuentes-Rivas, I.Linares-Hernández, V. Martínez-Miranda and R. M. G. FonsecaMontes de Oca, Int. J. Photoenergy, 2018 (2018).
58. S. Singh, V. Kumar, N. Upadhyay and J. Singh, J. Environ. Chem.Eng., 4, 3 (2016).
59. B. K. Körbahti, K. Artut, C. Geçgel and A. Özer, Chem. Eng. J., 173,3 (2011).
60. H. Khan, F. Wahab, S. Hussain, S. Khan and M. Rashid, Chemosphere, 291, 132818 (2022).
61. L. Feng, J. Liu, Z. Guo, T. Pan, J. Wu, X. Li, B. Liu and H. Zheng,Sep. Purif. Technol., 285, 120314 (2022).
62. H. S. Awad and N. A. Galwa, Chemosphere, 61, 9 (2005).
63. R. Kaur, J. P. Kushwaha and N. Singh, Sci. Total Environ., 677, 4 (2019).
64. A. A. Elbatea, A. Nosier, A. A. Zatout, I. Hassan, G. H. Sedahmed,M. H. Abdel-Aziz and M. A. El-Naggar, J. Water Process Eng., 41,102042 (2021).
65. P. Asaithambi, M. B. Yesuf, R. Govindarajan, N. M. Hariharan, P.Thangavelu and E. Alemayehu, Sep. Purif. Technol., 233, 115935 (2019).
66. F. Ghanbari and M. Mahsa, J. Environ. Chem. Eng., 3, 1 (2015).
67. R. Patidar and V. C. Srivastava, Chem. Eng. J., 403, 125736 (2020).
68. A.E. Kuleyin, A. Gok and F. Akbal, J. Environ. Chem. Eng., 9, 104782 (2021).
69. S. Hussain, H. Khan, N. Khan, S. Gul, F. Wahab, K. I. Khan, S.Zeb, S. Khan, A. Baddouh, S. Mehdi, A. F. Maldonado and M.Campos, Environ. Technol. Innov., 22, 101509 (2021).
70. R. G. Rice, J. Int. Ozone Assoc., 21, 2 (2008).
71. K. E. O’Shea and D. D. Dionysiou, Phys. Chem. Lett., 3, 15 (2012).
72. M. P. D. Silva, A. C. A. Souza, L. E. Lima Ferreira, L. M. P. Neto, B. F.Nascimento, C. M. B. Araújo, T. J. M. Fraga, M. A. M. Sobrinho and M. G. Ghislandi, Environ. Adv., 4, 100064 (2021).
73. T. J. M. Fraga, M. P. Silva, E. M. P. L. Freire, L. C. Almeida, M. A. M.Sobrinho, M. G. Ghislandi and M. N. Carvalho, Chem. Eng. Res.Des., 180, 109 (2022).
74. L. M. S. Farias, M. G. Ghislandi, M. F. de Aguia, D. B. R. S. Silva,A. N. R. Leal, F. A. O. Silva, T. J. M. Fraga, C. P. de Melo and K. G. B.Alves, Mater. Chem. Phys., 276, 125356 (2022).
75. M. P. D. Silva, M. Z. S. B. Souza, J. V. F. L. Cavalcanti, T. J. M. Fraga,M. A. M. Sobrinho and M. G. Ghislandi, Environ. Sci. Pollut. Res.,28, 23648 (2021).
76. B. Sari, H. Güney, S. Türkeş and O. Keskinkan, J. Int. Ozone Assoc.,1 (2022).
77. R. Chauhan and V. C. Srivastava, Ind. Eng. Chem. Res., 60, 15 (2021).
78. R. Chauhan and V. C. Srivastava, Process Saf. Environ. Protect., 147,245 (2021).
79. R. Patidar and V. C. Srivastava, Chem. Eng. J., 403, 125736 (2020).
80. N. N. Drouiche, N. Ghaffourb, H. Lounicic, N. Mameric, A. Maallemia and H. Mahmoudid, Desalination, 223, 1 (2008).
81. N. Kishimoto, T. Kitamura, M. Kato and H. Otsu, Water Res., 47,5 (2013).
82. N. Mohan, N. Balasubramanian and C. A. Basha, J. Hazard. Mater.,147, 1 (2007).
83. H. Afanga, H. Zazou, F. E. Titchou, Y. Rakhila, R. Ait Akbour, A.Elmchaouri, J. Ghanbaja and M. Hamdani, Sust. Environ. Res., 30,1 (2020).
84. A. S. Fajardo, H. F. Seca, R. C. Martins, V. N. Corceiro, I. F. Freitas,M. E. Quinta-Ferreira and R. M. Quinta-Ferreira, J. Electroanal.Chem., 785, 180 (2017).
85. L. Liang, L. Cheng, Y. Zhang, Q. Wang, Q. Wu, Y. Xueand X. Meng,RSC Adv., 10, 28509 (2020).
86. Q. Dai, L. Jiang and X. Luo, Int. J. Electrochem. Sci., 12, 4265 (2017).
87. H. Zhong, C. Sun, S. Yang, Y

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로