Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 13, 2022
Revised February 28, 2023
Accepted March 7, 2023
- Acknowledgements
- This research project is supported by Naresuan University (NU) and National Science, Research, and Innovation Fund (NSRF): Grant No. R2564B017. The authors would like to thank Assoc. Prof. Dr. Duangdao Channei (Department of Chemistry, Faculty of Sciences, Naresuan University) for technical support
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Removal of free fatty acid from waste cooking oil using an adsorbent derived from cassava peels
Abstract
The present study investigated the potential use of the cassava peel-derived adsorbent for removal of free
fatty acid (FFA) from waste cooking oil (WCO). The adsorbent A3 was developed by calcination at 200 o
C for 2 hours,
followed by NaOH modification. The surface morphology and functional groups of A3 were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Adsorption parameters, such as
adsorbent dose, contact time, and temperature, influenced the adsorption efficiency of A3 for FFA. Isotherms, kinetics
and thermodynamics of free fatty acid (FFA) adsorption onto A3 were investigated. The maximum adsorption capacity (qm) of A3 for FFA was 322.58 mg/g at a temperature of 35 o
C. Adsorption isotherm was well described by the Freundlich model (R2
=0.9676), while adsorption kinetics was best fitted with pseudo-second order model (R2
=0.9996).
Kinetic data revealed that the adsorption of FFA onto A3 was chemisorption. Thermodynamic studies revealed that
FFA adsorption was endothermic, favorable, and spontaneous. In addition, diethyl ether and chloroform : methanol
(2 : 1, v/v) could be used for chemical regeneration of A3. Our results confirmed that A3 has the potential to be a suitable adsorbent for FFA removal from WCO
References
2. A. Orjuela and J. Clark, Curr. Opin. Green Sustain. Chem., 26, 100369 (2020).
3. V. Cordero-Ravelo and J. Schallenberg-Rodriguez, J. Environ. Manage., 228, 117 (2018).
4. D. C. Panadare and V. K. Rathod, Iran. J. Chem. Chem. Eng., 12, 55 (2015).
5. I. Thushari and S. Babel, J. Environ. Manage., 310, 114810 (2022).
6. E. Choe and D. B. Min, J. Food Sci., 72, R77 (2007).
7. D. Topi, SN Appl. Sci., 2, 513 (2020).
8. K. A. Zahan and M. Kano, Energies, 11, 4 (2018).
9. Z.-Z. Cai, Y. Wang, Y.-L. Teng, K.-M. Chong, J.-W. Wang, J.-W.Zhang and D.-P. Yang, Fuel Process. Technol., 137, 186 (2015).
10. Y. Wang, S. Ma, L. Wang, S. Tang, W. W. Riley and M. J. T. Reaney,Eur. J. Lipid Sci. Technol., 114, 315 (2012).
11. R. Mićić, M. Tomić, F. Martinović, F. Kiss, M. Simikić and A.Aleksic, Green Process. Synth., 8, 15 (2019).
12. S. Karimi, M. Tavakkoli Yaraki and R. R. Karri, Renew. Sust. Energ.Rev., 107, 535 (2019).
13. E. Susilowati, A. Hasan and A. Syarif, J. Phys. Conf. Ser., 1167, 012035 (2019).
14. W. Rengga, A. Seubsai, S. Roddecha, A. Yudistira and A. Wiharto,J. Phys. Conf. Ser., 1918, 032008 (2021).
15. V. Chairgulprasert and P. Madlah, Sci. Technol. Asia, 23, 1 (2018).
16. N. Arahman, R.A. Fitri, A. Wirakusuma, A. Fahrina and M.R. Bilad,Int. J. Eng., 32, 1372 (2019).
17. A. Farook and S. Ravendran, J. Am. Oil Chem. Soc., 77, 437 (2000).
18. B. M. Jean Baptiste, B. K. Daniele, E. Marie Charlène, T. T. Larrissa Canuala, E. Antoine and K. Richard, Sci. Afr., 9, e00498 (2020).
19. T. R. Ushedo, O. G. Adeyemi, A. Adewuyi and W. J. Lau, Sci. Afr., 16,e01188 (2022).
20. M. L. T. Ayu Putranti, S. K. Wirawan and I. M. Bendiyasa, IOP Conf.Ser.: Mater. Sci. Eng., 299, 012085 (2018).
21. B. M. Jean Baptiste, N. Esther, M. Praisler and R. Kamga, Int. J.Biosci., 3, 15 (2013).
22. S. Rahayu, Supriyatin and A. Bintari, AIP Conf. Proc., 2019, 050004 (2018).
23. A. I. Malik, P. Kongsil, V. A. Nguyễn, W. Ou, Sholihin, P. Srean,M. N. Sheela, L. A. Becerra López-Lavalle, Y. Utsumi, C. Lu, P. Kittipadakul, H. H. Nguyễn, H. Ceballos, T. H. Nguyễn, M. Selvaraj Gomez, P. Aiemnaka, R. Labarta, S. Chen, S. Amawan, S. Sok, L. Youabee, M. Seki, H. Tokunaga, W. Wang, K. Li, H. A. Nguyễn, V.Nguyễn, L. H. Hàm and M. Ishitani, Breed. Sci., 70, 145 (2020).
24. C. Sowcharoensuk, https://www.krungsri.com/en/research/industry/industry-outlook/agriculture/cassava/io/io-cassava-21 (accessed 5/2/2023 2023).
25. K. M. Oghenejoboh, H. O. Orugba, U. M. Oghenejoboh and S. E.Agarry, Environ. Challenges, 4, 100127 (2021).
26. P. C. Jiwuba, L. C. Jiwuba, I. P. Ogbuewu and C. A. Mbajiorgu, Trop.Anim. Health Prod., 53, 207 (2021).
27. S. Widiarto, E. Pramono, Suharso, A. Rochliadi and I. M. Arcana,Fibers, 7, 5 (2019).
28. Y. He, A. M. Dietrich, Q. Jin, T. Lin, D. Yu and H. Huang, Food Bioprod. Process, 135, 227 (2022).
29. S. Rajeshwarisivaraj, S. Sivakumar, P. Senthilkumar and V. Subburam, Bioresour. Technol., 80, 233 (2001).
30. D. Schwantes, A. C. Gonçalves, G. F. Coelho, M. A. Campagnolo,D. C. Dragunski, C. R. T. Tarley, A. J. Miola and E. A. V. Leismann,J. Chem., 2016, 3694174 (2016)
31. L. Diaz and A. Brito, in Prime archives in chemical engineering, Vide Leaf, Hyderbad, India (2020).
32. A. K. Sandhu and L. Gu, J. Agric. Food Chem., 61, 1441 (2013).
33. S. Turan and A. Yalcuk, J. Am. Oil Chem. Soc., 90, 1761 (2013).
34. S.M. Abegunde, K.S. Idowu, O.M. Adejuwon and T. Adeyemi-Adejolu, Resources Environ. Sustain., 1, 100001 (2020).
35. Y. Zhou, L. Zhang and Z. Cheng, J. Mol. Liq., 212, 739 (2015).
36. T. Alsawy, E. Rashad, M. El-Qelish and R. H. Mohammed, NPJ Clean Water, 5, 29 (2022).
37. U. Kumar and M. Bandyopadhyay, Bioresour. Technol., 97, 104 (2006).
38. G.T. Tee, X.Y. Gok and W.F. Yong, Environ. Res., 212, 113248 (2022).
39. M. A. Al-Ghouti, M. A. M. Khraisheh, S. J. Allen and M. N. Ahmad,J. Environ. Manage., 69, 229 (2003).
40. X.-j. Chen, Y. Wang, L.-l. Liu, J.-f. Cui, M.-y. Gan, D. H. K. Shum and R. C. K. Chan, Psychiatry Res., 226, 14 (2015).
41. M. Vadi, A. Mansoorabad, M. Mohammadi and N. Rostami, Asian J. Chem., 25, 5467 (2013).
42. N. Ayawei, A. N. Ebelegi and D. Wankasi, J. Chem., 2017, 3039817 (2017).
43. A. Bazan-Wozniak, J. Cielecka-Piontek, A. Nosal-Wiercińska and R. Pietrzak, Materials, 15, 8000 (2022).
44. M. A. Al-Ghouti and D. A. Da'ana, J. Hazard. Mater., 393, 122383 (2020).
45. P. Saha, S. Chowdhury, S. Gupta and I. Kumar, Chem. Eng. J., 165,874 (2010).
46. W. Rudzinski and W. Plazinski, Environ. Sci. Technol., 42, 2470 (2008).
47. S. Chakraborty, S. Chowdhury and P. Das Saha, Carbohydr. Polym.,86, 1533 (2011).
48. N.J. Thiex, S. Anderson, B. Gildemeister and Collaborators, J. AOAC Int., 86, 888 (2003).
49. M. W. K. Wong, N. Braidy, R. Pickford, P. S. Sachdev and A. Poljak,Front. Neurol., 10, 879 (2019).
50. S. Pati, B. Nie, R. D. Arnold and B. S. Cummings, Biomed. Chromatogr., 30, 695 (2016).
51. M. Jahandar Lashaki, S. Khiavi and A. Sayari, Chem. Soc. Rev., 48,3320 (2019).
52. P. G. Parzuchowski, A. Świderska, M. Roguszewska, K. Rolińska and D. Wołosz, Energy Fuels, 34, 12822 (2020).
53. S. F. Azha and S. Ismail, IOP Conf. Ser.: Mater. Sci. Eng., 796, 012054 (2020).
54. G. Zhang, J. Zhang, J. Zeng, Y. Sun, Y. Shen, X. Li, X. Ren, C. Hai,Y. Zhou and W. Tang, Colloids Surf. A Physicochem. Eng. Asp., 629,127465 (2021)