ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 26, 2022
Revised March 7, 2023
Accepted March 25, 2023
Acknowledgements
The authors acknowledge the FEQUI/UFU, CNPq, FAPEMIG (Process: APQ - 00874-18) and CAPES (Brazil) for financial support and also acknowledge the ICP - CSIC institute (Spain) for allowing to this work to be carried out
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Immobilization of commercial acid phosphatases from wheat germ and potato onto ion exchangers

1Chemical Engineering Faculty, Federal University of Uberlândia, P.O. Box 593, Av. João Naves de Ávila 2121, Campus Santa Mônica, Bloco 1K, Uberlândia, MG 38408-144, Brazil 2Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC) Campus Cantoblanco, 28049, Madrid, España 3CIETI, School of Engineering (ISEP), Polytechnic of Porto (P.Porto), R. Dr. António Bernardino de Almeida, 4249-015, Porto, Portuga
Emresende@ufu.br
Korean Journal of Chemical Engineering, September 2023, 40(9), 2263-2270(8), 10.1007/s11814-023-1458-3
downloadDownload PDF

Abstract

A very simple and fast immobilization technique based on ion exchange was investigated to improve the thermal stability of acid phosphatase from wheat germ and potato. Immobilization was not efficient for the DEAE-sepharose, and MANAE-agarose supports. On the other hand, Toyopearl DEAE-650s proved to be a promising support, with immobilization yield above 95% and recovery of activity above 85% for both enzymes. A second step was introduced in the immobilization protocol to improve the thermal stability of these biocatalysts. For this, oxidation and reduction of glycosidic chains of acid phosphatase were carried out, allowing the formation of aldehyde groups and subsequent interaction with the amine groups to further stabilize the different forms (free and immobilized). Both biocatalysts showed residual activity after 1 hour of inactivation at the temperature of 60 o C, a fact not observed for the free enzyme. The wheat germ acid phosphatase derivative was the most stable, with residual activity of 66.7% for the only immobilized derivative and 76.2% for the oxidized/reduced derivative. Also, the derivatives prepared by ion exchange adsorption on Toyopearl (TOYO), followed by oxidation/reduction and intramolecular crosslinking, were approximately 15 and 41 times more stable than the free enzyme from wheat germ.

References

1. A. Anand and P. K. Srivastava, Appl. Biochem. Biotechnol., 167, 8 (2012).
2. B. C. Behera, S. K. Singdevsachan, R. R. Mishra, S. K. Dutta and H. N. Thatoi, Biocatal. Agric. Biotechnol., 3, 97 (2014).
3. C. K. Tagad and S. G. Sabharwal, J. Food Sci. Technol., 55 (2018).
4. A. A. Souza, V. O. Leitão, M. H. Ramada, A. Mehdad, R. C. Georg,C. J. Ulhôa and S. M. Freitas, PLoS ONE, 11, 3 (2016).
5. L. Zhao, Q. Liu, Y.-Q. Zhang, Q.-Y. Cui and Y.-C. Liang, J. Integr.Agric., 16, 6 (2017).
6. S. M. G. Duff, G. Sarath and W. C. Plaxton, Physiol Plant, 90 (1994).
7. P. A. Granjeiro, A. D. M. Cavagis, L. C. Leite, C. V. Ferreira, J. M.Granjeiro and H. Aoyama, Mol. Cell Biochem., 266 (2004).
8. L. Gianfreda and M. A. Rao, Enzyme Microbial Tech., 35, 4 (2004).
9. C. F. Hoehamer, C. S. Mazur and N. L. Wolfe, J. Agric. Food Chem.,53, 1 (2005).
10. S. Muniyan, N. K. Chaturvedi, J. G. Dwyer, C. A. Lagrange, W. G.Chaney and M. F. Lin, Int. J. Mol. Sci., 14 (2013).
11. I. B. Quintero, A. M. Herrala, C. L. Araújo, A. E. Pulkka, S. Hautaniemi, K. Ovaska, E. Pryazhnikov, E. Kulesskiy, M. K. Ruuth, Y.
Soini, R. T. Sormunen, L. Khirug and P. T. Vihko, PLoS One, 8, 9 (2013).
12. S. Sebastian, S. P. Touchburb, E. R. Chavez and P. C. Lague, Poult.Sci., 75 (1996).
13. M. R. A. Azeem, A. N. Chaudhary, R. Hayat, Q. Hussain, M. I.Tahir and M. Imran, Arch. Agron. Soil Sci., 6 (2014).
14. L. M. Pinotti, P. W. Tardioli, C. S. Farinas, G. Fernández-Lorente,A. H. Orrego, J. M. Guisan and B. C. Pessela, Appl. Biochem. Biotechnol., 192 (2020).
15. R. A. Sheldon and S. Van-Pelt, Chem. Soc. Rev., 42 (2013).
16. D. Brady and J. Jordaan, Biotech. Lett., 31 (2009).
17. A. Liese and L. Hilterhaus, Chem. Soc. Rev., 42 (2013).
18. U. Guzik, K. Hupert-Kocurek and D. Wojcieszunska, Molecules,19, 17 (2014).
19. T. Kawai, K. Saito and W. Lee, J. Chromatog. B. Anal. Technol. Biomed Life Sci., 790 (2003).
20. P.R. Levison, Chromatogr. Performance Adv. Synth. Catal., 349 (2007).
21. R. A. Sheldon, Synth. Catal., 349 (2007).
22. B. Krajewska, Enzyme Microb. Technol., 35 (2004).
23. X. D. Tong, X. Y. Dong and Y. Sun, Biochem., Eng. J., 12 (2002).
24. A. Lyddiatt, Curr. Opin. Biotechnol., 13 (2002).
25. T. L. Albuquerque, S. Pierce, N. Rueda, A. Marzochella, L. R. B.Gonçalves, M. V. P. Rocha and R. Fernadez-Lafuente, Process Biochem., 51, 7 (2016).
26. V. O. Leitão, R. C. M. Lima, M. H. Vainstein and C. J. Ulhoa, Biotechnol. Lett., 32, 8 (2010).
27. B. N. Ames, Meth. Enzymol., 8 (1966).
28. R. Fernandez-Lafuente, P. Armisén, P. Sabuquillo, G. M. Fernández-Lorente and J. M. Guisan, Chem. Phys. Lipids, 93 (1998).
29. J. M. Guisan, Enzym. Microb. Technol., 10 (1988).
30. L. Trobo-Maseda, A. H. Orrego, J. M. Guisan and J. Rocha-Martin,Int. J. Biol. Macromol., 157 (2020).
31. T. Kalita and P. K. Ambasht, J. Protein Proteomics, 10 (2019).
32. G. Fernandez-Lorente, Z. Cabrera, C. Godoy, R. Fernandez-Lafuente,J. M. Palomo and J. M. Guisan, Process Biochem., 43 (2008).
33. P. K. Srivastava and A. Anand, Int. J. Biol. Macromol., 64 (2014).
34. J. Zhu, Q. Huang, M. Pigna and A. Violante, Colloid Surf. B, 77 (2010).
35. K. R. C. Reddy and A. M. Kayastha, J. Mol. Catal. B Enzym., 38 (2006)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로