Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 26, 2022
Revised March 7, 2023
Accepted March 25, 2023
- Acknowledgements
- The authors acknowledge the FEQUI/UFU, CNPq, FAPEMIG (Process: APQ - 00874-18) and CAPES (Brazil) for financial support and also acknowledge the ICP - CSIC institute (Spain) for allowing to this work to be carried out
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Immobilization of commercial acid phosphatases from wheat germ and potato onto ion exchangers
Abstract
A very simple and fast immobilization technique based on ion exchange was investigated to improve the
thermal stability of acid phosphatase from wheat germ and potato. Immobilization was not efficient for the DEAE-sepharose, and MANAE-agarose supports. On the other hand, Toyopearl DEAE-650s proved to be a promising support,
with immobilization yield above 95% and recovery of activity above 85% for both enzymes. A second step was introduced in the immobilization protocol to improve the thermal stability of these biocatalysts. For this, oxidation and
reduction of glycosidic chains of acid phosphatase were carried out, allowing the formation of aldehyde groups and
subsequent interaction with the amine groups to further stabilize the different forms (free and immobilized). Both biocatalysts showed residual activity after 1 hour of inactivation at the temperature of 60 o
C, a fact not observed for the
free enzyme. The wheat germ acid phosphatase derivative was the most stable, with residual activity of 66.7% for the
only immobilized derivative and 76.2% for the oxidized/reduced derivative. Also, the derivatives prepared by ion
exchange adsorption on Toyopearl (TOYO), followed by oxidation/reduction and intramolecular crosslinking, were
approximately 15 and 41 times more stable than the free enzyme from wheat germ.
Keywords
References
2. B. C. Behera, S. K. Singdevsachan, R. R. Mishra, S. K. Dutta and H. N. Thatoi, Biocatal. Agric. Biotechnol., 3, 97 (2014).
3. C. K. Tagad and S. G. Sabharwal, J. Food Sci. Technol., 55 (2018).
4. A. A. Souza, V. O. Leitão, M. H. Ramada, A. Mehdad, R. C. Georg,C. J. Ulhôa and S. M. Freitas, PLoS ONE, 11, 3 (2016).
5. L. Zhao, Q. Liu, Y.-Q. Zhang, Q.-Y. Cui and Y.-C. Liang, J. Integr.Agric., 16, 6 (2017).
6. S. M. G. Duff, G. Sarath and W. C. Plaxton, Physiol Plant, 90 (1994).
7. P. A. Granjeiro, A. D. M. Cavagis, L. C. Leite, C. V. Ferreira, J. M.Granjeiro and H. Aoyama, Mol. Cell Biochem., 266 (2004).
8. L. Gianfreda and M. A. Rao, Enzyme Microbial Tech., 35, 4 (2004).
9. C. F. Hoehamer, C. S. Mazur and N. L. Wolfe, J. Agric. Food Chem.,53, 1 (2005).
10. S. Muniyan, N. K. Chaturvedi, J. G. Dwyer, C. A. Lagrange, W. G.Chaney and M. F. Lin, Int. J. Mol. Sci., 14 (2013).
11. I. B. Quintero, A. M. Herrala, C. L. Araújo, A. E. Pulkka, S. Hautaniemi, K. Ovaska, E. Pryazhnikov, E. Kulesskiy, M. K. Ruuth, Y.
Soini, R. T. Sormunen, L. Khirug and P. T. Vihko, PLoS One, 8, 9 (2013).
12. S. Sebastian, S. P. Touchburb, E. R. Chavez and P. C. Lague, Poult.Sci., 75 (1996).
13. M. R. A. Azeem, A. N. Chaudhary, R. Hayat, Q. Hussain, M. I.Tahir and M. Imran, Arch. Agron. Soil Sci., 6 (2014).
14. L. M. Pinotti, P. W. Tardioli, C. S. Farinas, G. Fernández-Lorente,A. H. Orrego, J. M. Guisan and B. C. Pessela, Appl. Biochem. Biotechnol., 192 (2020).
15. R. A. Sheldon and S. Van-Pelt, Chem. Soc. Rev., 42 (2013).
16. D. Brady and J. Jordaan, Biotech. Lett., 31 (2009).
17. A. Liese and L. Hilterhaus, Chem. Soc. Rev., 42 (2013).
18. U. Guzik, K. Hupert-Kocurek and D. Wojcieszunska, Molecules,19, 17 (2014).
19. T. Kawai, K. Saito and W. Lee, J. Chromatog. B. Anal. Technol. Biomed Life Sci., 790 (2003).
20. P.R. Levison, Chromatogr. Performance Adv. Synth. Catal., 349 (2007).
21. R. A. Sheldon, Synth. Catal., 349 (2007).
22. B. Krajewska, Enzyme Microb. Technol., 35 (2004).
23. X. D. Tong, X. Y. Dong and Y. Sun, Biochem., Eng. J., 12 (2002).
24. A. Lyddiatt, Curr. Opin. Biotechnol., 13 (2002).
25. T. L. Albuquerque, S. Pierce, N. Rueda, A. Marzochella, L. R. B.Gonçalves, M. V. P. Rocha and R. Fernadez-Lafuente, Process Biochem., 51, 7 (2016).
26. V. O. Leitão, R. C. M. Lima, M. H. Vainstein and C. J. Ulhoa, Biotechnol. Lett., 32, 8 (2010).
27. B. N. Ames, Meth. Enzymol., 8 (1966).
28. R. Fernandez-Lafuente, P. Armisén, P. Sabuquillo, G. M. Fernández-Lorente and J. M. Guisan, Chem. Phys. Lipids, 93 (1998).
29. J. M. Guisan, Enzym. Microb. Technol., 10 (1988).
30. L. Trobo-Maseda, A. H. Orrego, J. M. Guisan and J. Rocha-Martin,Int. J. Biol. Macromol., 157 (2020).
31. T. Kalita and P. K. Ambasht, J. Protein Proteomics, 10 (2019).
32. G. Fernandez-Lorente, Z. Cabrera, C. Godoy, R. Fernandez-Lafuente,J. M. Palomo and J. M. Guisan, Process Biochem., 43 (2008).
33. P. K. Srivastava and A. Anand, Int. J. Biol. Macromol., 64 (2014).
34. J. Zhu, Q. Huang, M. Pigna and A. Violante, Colloid Surf. B, 77 (2010).
35. K. R. C. Reddy and A. M. Kayastha, J. Mol. Catal. B Enzym., 38 (2006)