Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 20, 2022
Revised January 25, 2023
Accepted February 24, 2023
- Acknowledgements
- The authors would like to acknowledge the financial support of Kermanshah University of Technology for this research under Grant Number S/P/T/1432
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Carbon dioxide absorption by Ammonia-promoted aqueous triethanolamine solution in a packed bed
Abstract
CO2 absorption by ammonia added triethanolamine aqueous solution as a promoter was investigated in
terms of absorption percentage (AP), overall volumetric mass transfer coefficient (KGae), and molar flux (NA) in a packed
column. Three variables of ammonia concentration (0-5 wt%), Triethanolamine concentration (10-30 wt%), and gas
flow rate (1,500-2,500 ml/min) were considered as significant variables in absorption performance. Effect of these variables and their interactions were inspected using the three level factorial response-surface method. Statistical analysis of
the results showed that an ammonia concentration with 72.99%, 71.83, and 81.12% has the greatest effect on AP%, NA,
and KGae, respectively. Then, gas flow rate with 5.27% and 3.90%, had a great effect on AP% and KGae, respectively.
Finally, the optimal operating conditions were determined to maximize the responses. Under optimal operating conditions, the maximum values for AP%, KGae, and NA were 98.94%, 0.202 kmol/h·m3
·kPa, and 3.901 kmol/m2
·h, respectively. Thus, adding ammonia to triethanolamine considerably improves the mass transfer performance of solven
References
2. J.-G. Lu, M.-d. Cheng, J. Yan and H. Zhang, J. Fuel Chem. Technol., 37, 740 (2009).
3. Intergovernmental Panel on Climate Working Group 1, Scientific Assessment of Climate Change, Cambridge University Press, Cambridge, Great Britain, New York, NY, USA and Melbourne, Australia (1990).
4. H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland and I.Wright, J. Environ. Sci., 20, 14 (2008).
5. S. Hasanizadeh and P. Valeh-e-Sheyda, Environ. Prog. Sustain.Energy, 41, e13788 (2022).
6. A. Houshmand, M. S. Shafeeyan, A. Arami-Niya and W. M. A. W.Daud, J. Taiwan Inst. Chem., 44, 774 (2013).
7. M. S. Shafeeyan, W. M. A. W. Daud, A. Shamiri and N. Aghamohammadi, Chem. Eng. Res. Des., 104, 42 (2015).
8. P. Valeh-e-Sheyda and A. Afshari, Process Saf. Environ. Prot., 127,125 (2019).
9. H. Pashaei and A. Ghaemi, Iran. J. Chem. Chem. Eng., 41, 2771 (2021).
10. P. Valeh-e-Sheyda and J. Barati, Process Saf. Environ. Prot., 146, 54 (2021).
11. M. Akbari and P. Valeh-e-Sheyda, Process Saf. Environ. Prot., 132,116 (2019).
12. P. Valeh-e-Sheyda, M. Faridi Masouleh and P. Zarei-Kia, Fluid Phase Equilib., 546, 113136 (2021).
13. S. Maneshdavi, S. M. Peyghambarzadeh, S. Sayyahi and S. Azizi, J.Chem. Pet. Eng., 54, 57 (2020).
14. P. Valeh-e-Sheyda and H. Rashidi, Appl. Therm. Eng., 98, 1241 (2016).
15. M. D. La Rubia, R. Pacheco, A. Sánchez, A. B. L. García, S. Sánchez and F. Camacho, Int. J. Chem. React. Eng., 10, 1 (2012).
16. M.-K. Kang, S.-B. Jeon, M.-H. Lee and K.-J. Oh, Korean J. Chem. Eng., 30, 1171 (2013).
17. S. Sarlak and P. Valeh-e-Sheyda, Energy, 239, 122349 (2022).
18. F. Li, A. Hemmati and H. Rashidi, Process Saf. Environ. Prot., 142, 83 (2020).
19. A. Singh, Y. Sharma, Y. Wupardrasta and K. Desai, Resour. Efficient Technol., 2, S165 (2016).
20. S.-H. Yeon, B. Sea, Y.-I. Park, K.-S. Lee and K.-H. Lee, Sep. Sci.Technol., 39(14), 3281 (2004).
21. G. Qi, S. Wang, H. Yu, P. Feron and C. Chen, Energy Procedia, 37,1968 (2013).
22. P. S. Nair and P. Selvi, Int. J. Sci. Res. Publication, 4, 1 (2014).
23. S.-B. Jeon, H.-D. Lee, M.-K. Kang, J.-H. Cho, J.-B. Seo and K.-J.Oh, J. Taiwan Inst. Chem., 44, 1003 (2013).
24. S.-W. Park, B.-S. Choi and J.-W. Lee, Korean J. Chem. Eng., 23, 138 (2006).
25. Q. Zeng, Y. Guo, Z. Niu and W. Lin, Ind. Eng. Chem. Res., 50,10168 (2011).
26. R. Billet and M. Schultes, Chem. Eng. Res. Des., 77, 498 (1999).
27. A. A. Khan, G. Halder and A. Saha, Int. J. Greenh. Gas Control., 32,15 (2015).
28. A. Rezaei, P. Pakzad, M. Mofarahi, A. A. Izadpanah, M. Afkhamipour and C.-H. Lee, J. Chem. Eng. Data, 66, 2942 (2021).
29. M. K. Kang, S. B. Jeon, M. H. Lee and K. J. Oh, Korean J. Chem.Eng., 30, 1171 (2013).
30. A. Hemmati and H. Rashidi, Process Saf. Environ. Prot., 121, 77 (2019).
31. D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons (2017).
32. K. Fu, T. Sema, Z. Liang, H. Liu, Y. Na, H. Shi, R. Idem and P. Tonti-wachwuthikul, Ind. Eng. Chem. Res., 51, 12058 (2012).
33. H. Rashidi and S. Sahraie, Energy, 221, 119799 (2021).
34. L. Tan, A. Shariff, K. Lau and M. Bustam, J. Ind. Eng. Chem., 18,1874 (2012).
35. F. Wei, Y. He, P. Xue, Y. Yao, C. Shi and P. Cui, Ind. Eng. Chem.Res., 53, 4462 (2014).
36. S. Sahraie, H. Rashidi and P. Valeh-e-Sheyda, Process Saf. Environ. Prot., 122, 161 (2019).
37. N. Kittiampon, A. Kaewchada and A. Jaree, Int. J. Greenh. Gas Control., 63, 431 (2017).
38. S. Ma, B. Zang, H. Song, G. Chen and J. Yang, Int. J. Heat Mass Transf., 67, 696 (2013).
39. F. Chu, Y. Liu, L. Yang, X. Du and Y. Yang, Appl. Energy, 205, 1596 (2017).
40. P. Asgarifard, M. Rahimi and N. Tafreshi, Can. J. Chem. Eng., 99,601 (2021).
41. G. Derringer and R. Suich, J. Qual. Technol., 12, 214 (1980).
42. Q. Zeng, Y. Guo, Z. Niu and W. Lin, Fuel Process. Technol., 108, 76 (2013).
43. S. Ma, G. Chen, S. Zhu, T. Han and W. Yu, Appl. Energy, 162, 354 (2016).