ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 11, 2023
Revised February 15, 2023
Accepted February 17, 2023
Acknowledgements
This work was supported by Netaji Subhas University of Technology, New Delhi and Inha University Research Grant.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Thermophysical properties of N-isopropyl-2-propanamine+alkanol (C1-C3) mixtures as absorbents for carbon dioxide capture

1Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Yonghyeon Campus, Incheon 22212, Korea 2Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131 039, India 3Department of Applied Sciences and Humanities, Panipat Institute of Engineering and Technology, Samalkha-132102, India 4Department of Chemical Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131 039, India 5Department of Chemistry, Maharshi Dayanand University, Rohtak-124001, India 6Department of Chemistry, Netaji Subhas University of Technology, New Delhi, 110078 India
yongjin.lee@inha.ac.kr, sanjeevmakin@gmail.com
Korean Journal of Chemical Engineering, September 2023, 40(9), 2293-2302(10), 10.1007/s11814-023-1422-2
downloadDownload PDF

Abstract

As N-isopropyl-2-propanamine+alkanol (C1-C3) systems are potential absorbents for CO2 capture, we measured density (), viscosity () and the ultrasonic speed data (u) for N-isopropyl-2-propanamine (DIPA) with alkanol (C1-C3) at T=(298.15 and 308.15) K and 0.1 MPa. The experimental density (), viscosity () and ultrasonic speed (u) data were used to derive excess molar volume (Vm E ), apparent, partial, and excess partial molar volume, deviation in viscosity and deviation in ultrasonic speed, excess isentropic compressibility (s E ). We predicted the Vm E values using the Prigogine-Flory-Patterson theory (PFP) and by Nakata and Sakurai model. An Ab initio approach was proposed for the excess isentropic compressibility (s E ) and  data which not only reproduces the experimental data but also gives important parameters that describe the extent of depolymerization on mixing and strength of intermolecula

References

1. N. Cahill, Significance, 15, 24 (2018).
2. H. Kwon, K. Tak, S. Maken, H. Kim, J. Park and I. Moon, Korean J. Chem. Eng., 34, 3048 (2017).
3. R. A. Kerr, Science, 312, 825 (2006).
4. F. Kong, G. Rim, M. G. Song, C. Rosu, P. Priyadarshini, R. P. Lively,M. J. Realff and C. W. Jones, Korean J. Chem. Eng., 39(1), 1 (2022).
5. S. Chu, Science, 325, 1599 (2009).
6. M. Meinshausen, N. Meinshausen, W. Hare, S. C. Raper, K. Frieler,R. Knutti, D. J. Frame and M. R. Allen, Nature, 458, 1158 (2009).
7. H.-J. Song, S. Lee, S. Maken, S.-W. Ahn, J.-W. Park, B. Min and W.Koh, Energy Policy, 35, 5109 (2007).
8. H.-J. Song, S. Lee, S. Maken, J.-J. Park and J.-W. Park, Fluid Phase Equilib., 246, 1 (2006).
9. S. Lee, J.-W. Park, H.-J. Song, S. Maken and T. Filburn, Energy Policy, 36, 326 (2008).
10. A. Gaur, J.-W. Park, S. Maken, H.-J. Song and J.-J. Park, Fuel Process. Technol., 91, 635 (2010).
11. S. Lee, S.-I. Choi, S. Maken, H.-J. Song, H.-C. Shin, J.-W. Park, K.-R.Jang and J.-H. Kim, J. Chem. Eng. Data, 50, 1773 (2005).
12. S. Lee, H.-J. Song, S. Maken, H.-C. Shin, H.-C. Song and J.-W.Park, J. Chem. Eng. Data, 51, 504 (2006).
13. S. Lee, S. Maken, J.-W. Park, H.-J. Song, J. J. Park, J.-G. Shim, J.-H.Kim and H.-M. Eum, Fuel, 87, 1734 (2008).
14. H. Liu, X. Lu, L. Liu, J. Wang, P. Wang, P. Gao, T. Ren, G. Tian and D. Wang, Korean J. Chem. Eng., 39(9), 2513 (2022).
15. R. R. Wanderley, G. J. Ponce and H. K. Knuutila, Energy Fuels, 34,8552 (2020).
16. Z. Xu, S. Wang, J. Liu and C. Chen, Energy Procedia, 23, 64 (2012).
17. Y. Zhang, Z. Wang and S. Wang, J. Appl. Polym. Sci., 86, 2222 (2002).
18. C. Dell’Era, P. Uusi-Kyyny, E.-L. Rautama, M. Pakkanen and V.Alopaeus, Fluid Phase Equilib., 299, 51 (2010).
19. Z. Li, D. Zhao, Y. Zhuang, F. Yang, X. Liu and Y. Chen, J. Chem.Thermodyn., 133, 37 (2019).
20. J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents. Physical Properties and Methods of Purification, Fourth Ed., Wiley New York (1986).
21. M. Rani and S. Maken, Korean J. Chem. Eng., 30(8), 1636 (2013).
22. M. Rani, S. Maken and S. J. Park, Korean J. Chem. Eng., 36, 1401 (2019).
23. S. Gahlyan, M. Rani, I. Lee, I. Moon and S. K. Maken, Korean J.Chem. Eng., 32(1), 168 (2015).
24. S. Gahlyan, R. Devi, S. Verma, M. Rani, S. J. Park and S. Maken,Korean J. Chem. Eng., 37, 1181 (2020).
25. S. Oswal, P. Oswal, R. Gardas, S. G. Patel and R. G. Shinde, Fluid Phase Equilib., 216, 33 (2004).
26. P. Tyagi, K. Kumar, M. Rani and V. Bhankar, J. Chem. Eng. Data,64, 3213 (2019).
27. G. P. Dubey and K. Kumar, J. Chem. Eng. Data, 61, 1967 (2016).
28. M. I. Aralaguppi, C. V. Jadar and T. M. Aminabhavi, J. Chem. Eng.Data, 44, 216 (1999).
29. E. Vercher, A. V. Orchillés, P. J. Miguel and A. Martínez-Andreu, J.Chem. Eng. Data, 52, 1468 (2007).
30. P. S. Nikam, M. C. Jadhav and M. Hasan, J. Chem. Eng. Data, 40,931 (1995).
31. P. K. Pandey, V. K. Pandey, A. Awasthi, A. K. Nain and A. Awasthi,Thermochim. Acta, 586, 58 (2014).
32. R. Sadeghi and S. Azizpour, J. Chem. Eng. Data, 56, 240 (2011).
33. P. S. Nikam, L. N. Shirsat and M. Hasan, J. Chem. Eng. Data, 43, 732 (1998).
34. A. Estrada-Baltazar, G. A. Iglesias-Silva and C. Caballero-Cerón, J.Chem. Eng. Data, 58, 3351 (2013).
35. M. I. Aralaguppi, C. V. Jadar and T. M. Aminabhavi, J. Chem. Eng.Data, 44, 435 (1999).
36. S. Gahlyan, S. Verma, M. Rani and S. Maken, Korean Chem. Eng.Res., 55, 520 (2017).
37. C.A. Cerdeiriña, C.A. Tovar, J. Troncoso, E. Carballo and L. Romaní,Fluid Phase Equilib., 157, 93 (1999).
38. M. Rani, S. Gahlyan, A. Gaur and S. Maken, Chinese J. Chem. Eng.,23, 689 (2015).
39. S. Gahlyan, S. Verma, M. Rani and S. Maken, Korean J. Chem. Eng.,35, 1167 (2018).
40. S. L. Oswal and H. S. Desai, Fluid Phase Equilib., 149, 359 (1998).
41. N. Riesco, S. Villa, J. A. González, I. García de la Fuente and J. C.Cobos, Fluid Phase Equilib., 202, 345 (2002).
42. S. Gahlyan, N. Verma, S. Verma, M. Rani, S. J. Park and S. Maken,J. Mol. Liq., 298, 111946 (2020).
43. S. Gahlyan, S. Verma, M. Rani and S. Maken, J. Mol. Liq., 244, 233 (2017).
44. Y. Maham, T. T. Teng, L. G. Hepler and A. E. Mather, J. Sol. Chem.,23, 195 (1994).
45. I. Prigogine, N. Trappeniers and V. Mathot, Discuss. Faraday Soc.,15, 93 (1953).
46. I. Prigogine, N. Trappeniers and V. Mathot, J. Chem. Phys., 21, 559 (1953).
47. I. Prigogine and V. Mathot, J. Chem. Phys., 20, 49 (1952).
48. I. Prigogine, A. Bellemans and V. Mathot, The molecular theory of solutions north-holland publishing company, Amsterdam (1957).
49. M. Nakata and M. Sakurai, J. Chem. Soc. Faraday Trans. 1: Phys.Chem. Condens. Phases, 83, 2449 (1987).
50. P. Bhagat and S. Maken, Asian J. Chem., 32, 2443 (2020).
51. M. L. Huggins, J. Phys. Chem., 74, 371 (1970).
52. M. L. Huggins, Polymer, 12, 389 (1971).
53. P. Bhagat and S. Maken, J. Mol. Liq., 323(1), 114640 (2020).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로