Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 31, 2022
Revised October 13, 2022
Accepted October 19, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Correlation and thermal conductivity sensitivity analysis of ternary hybrid nanofluids containing CuO and TiO2 nanoparticles and multi-walled carbon nanotubes
Abstract
The use of substandard nanofluids (NFs) in various industries causes the depreciation of industrial parts
and shortens the life of the parts. Therefore, the researchers in this study will help to improve the performance of
industrial equipment by preparing and examining a special hybrid nanofluid (HNF). The current research is divided
into two experimental and theoretical parts. First, a ternary hybrid nanofluid (THNF) with three nanoparticles (NPs)
CuO, MWCNT and TiO2 with specific ratios and solid volume fraction (SVF) in water was prepared and produced.
Then, the thermal conductivity (TC) of the produced nanofluid (NF) is measured by KD2 pro at different temperatures and SVFs. The results show that temperature and SVF are directly related to thermal conductivity enhancement
(TCE). The maximum TC of the desired THNF is equal to 35.60% at SVF=1.65% and T=50 o
C. In the theory part,
using the response surface method (RSM), a very accurate correlation relationship R2
=0.9986 is provided. Also, the
sensitivity of relative thermal conductivity (RTC) to changes of +10% SVF is presented, and the maximum deviation
for the studied THNF is equal to 0.95%
Keywords
References
2. H. Dehghani Ashkezari, H. Sid Kalal, H. Hoveidi, M. R. Almasian and M. Ashoor, CJES, 15(1), 1 (2017).
3. M. A. Asif, JRSET, 6(04), 21 (2018).
4. N. K. A. Dwijendra, I. Patra, Y. M. Ahmed, Y. M. Hasan, Z. M.Najm, Z. I. Al Mashhadani and A. Kumar, Monatsh. fur Chem.,153(10), 873 (2022).
5. D. Domyati, Eur. Chem. Bull., 11(2), 1 (2022).
6. Y. Zhang, H. N. Li, C. Li, C. Huang, H. M. Ali, X. Xu, C. Mao, W.Ding, X. Cui, M. Yang, T. Yu, M. Jamil, M. K. Gupta, D. Jia and Z.Said, Friction, 10, 803 (2022).
7. S. Alidoust, M. Zamani and M. Jabbari, IJC, 10(4), 295 (2020).
8. Y. Wang, C. Li, Y. Zhang, M. Yang, B. Li, L. Dong and J. Wang, Int.J. Precis. Eng. Manuf. - Green Technol., 5(2), 327 (2018).
9. Z. Guo, J. Yang, Z. Tan, X. Tian and Q. Wang, Int. J. Heat Mass Transf., 174, 121296 (2021).
10. A. B. W. Putra, Int. J. Inf. Commun. Technol., 8(2), 9 (2020).
11. M. Yang, C. Li, Y. Zhang, D. Jia, X. Zhang, Y. Hou and J. Wang,Int. J. Mach. Tools Manuf., 122, 55 (2017).
12. M. Yang, C. Li, Y. Zhang, D. Jia, R. Li, Y. Hou and J. Wang, Ceram.Int., 45(12), 14908 (2019).
13. X. Cui, C. Li, Y. Zhang, W. Ding, Q. An, B. Liu, H. N. Li, Z. Said, S.Sharma, R. Li and S. Debnath, Front. Mech. Eng., 18, 3 (2023).
14. M. Liu, C. Li, Y. Zhang, Q. An, M. Yang, T. Gao and S. Sharma,Front. Mech. Eng., 16(4), 649 (2021).
15. J. Müssig and N. Graupner, Progress in Adhesion and Adhesives, 6 69 (2021).
16. M. Afrand, D. Toghraie and B. Ruhani, Exp. Therm. Fluid Sci., 77,38 (2016).
17. H. Watandost, J. Achak and A. Haqmal, IJIRMS, 4(4), 191 (2021).
18. B. Ruhani, M. Taheri Andani, A. M. Abed, N. Sina, G. Fadhil Smaisim, S. K. Hadrawi and D. Toghraie, Heliyon, 8(11), e11373 (2022).
19. Y. F. Al-Khafaji, M. R. Al-Lami, A. S. Abbas, A. M. E. E. R. Al-Ameri and A. F. A. Mousa, Asian J. Chem., 30(2), 460 (2018).
20. S. Rostami, D. Toghraie, B. Shabani, N. Sina and P. Barnoon, J.Therm. Anal. Calorim., 143(2), 1097 (2021).
21. M. H. Esfe and A. A. A. Arani, J. Mol. Liq., 259, 227 (2018).
22. T. J. Choi, S. H. Kim, S. P. Jang, D. J. Yang and Y. M. Byeon, J. Therm.Anal. Calorim., 180, 115780 (2020).
23. S. E. Ghasemi, A. A. Ranjbar, M. J. Hoseini and S. Mohsenian, J.Mater. Res. Technol., 15, 2276 (2021).
24. T. Wen, G. Zhu, K. Jiao and L. Lu, Int. J. Heat Mass Transf., 178,121617 (2021).
25. M. H. Esfe, M. K. Amiri and A. Alirezaie, J. Therm. Anal. Calorim.,134(2), 1113 (2018).
26. C. Qi, T. Chen, J. Tu and Y. Yan, Int. J. Energy Res., 44(13), 10628 (2020).
27. M. Zadkhast, D. Toghraie and A. Karimipour, J. Therm. Anal. Calorim., 129(2), 859 (2017).
28. G. Wang, C. Qi and J. Tang, J. Therm. Anal. Calorim., 141(1), 15 (2020).
29. J. C. Maxwell, Clarendon Press, 1 (2008).
30. S. U. Choi and J. A. Eastman, Argonne National Lab. (ANL),Argonne, IL (United States) (1995).
31. C. Qi, J. Tang, Z. Ding, Y. Yan, L. Guo and Y. Ma, Int. Commun.Heat Mass Transf., 109, 104349 (2019).
32. M. H. Esfe, H. Rostamian and M. R. Sarlak, J. Mol. Liq., 254, 406 (2018).
33. A. Asadi, A. N. Bakhtiyari and I. M. Alarifi, Eng. Comput., 37(4),3813 (2021).
34. H. Adun, D. Kavaz, M. Dagbasi, H. Umar and I. Wole-Osho, Powder Technol., 394, 1121 (2021).
35. K. Y. Leong, K. K. Ahmad, H. C. Ong, M. J. Ghazali and A. Baharum, Renew. Sustain. Energy Rev., 75, 868 (2017).
36. Z. Tang, C. Qi, L. Zhang and Z. Tian, Transp. Porous Media, 142,599 (2022).
37. T. Ambreen and M. H. Kim, Appl. Energy, 264, 114684 (2020).
38. Z. Li, R. Kalbasi, Q. Nguyen and M. Afrand, Powder Technol., 367,464 (2020).
39. A. Moradi, M. Zareh, M. Afrand and M. Khayat, Powder Technol.,362, 578 (2020).
40. A. Asadi and F. Pourfattah, Powder Technol., 343, 296 (2019).
41. M. H. Esfe, Appl. Therm. Eng., 126, 559 (2017).
42. M. Hemmat Esfe, J. Therm. Anal. Calorim, 127(3), 2125 (2017).
43. A. Akhgar and D. Toghraie, Powder Technol., 338, 806 (2018).
44. M. H. K. Darvanjooghi and M. N. Esfahany, Int. Commun. Heat Mass Transf., 77, 148 (2016).
45. M. Afrand, Appl. Therm. Eng., 110, 1111 (2017).
46. S. Alidoust, F. AmoozadKhalili and S. Hamedi, Colloids Surf. A:Physicochem. Eng. Asp., 645, 128625 (2022).
47. A. Parsian and M. Akbari, J. Therm. Anal. Calorim., 131(2), 1605 (2018).
48. M. Hemmat Esfe, S. Esfandeh and M. Rejvani, J. Therm. Anal. Calorim., 131(2), 1437 (2018).
49. M. Vafaei, M. Afrand, N. Sina, R. Kalbasi, F. Sourani and H. Teimouri, Phys. E: Low-Dimens. Syst. Nanostructures, 85, 90 (2017).
50. D. J. Thevenard and R. G. Humphries, ASHRAE Trans., 111, 457 (2005).
51. F. Ahmad, CAAI Trans. Intell. Technol., 7(2), 200 (2022).
52. J. Khan, E. Lee and K. Kim, CAAI Trans. Intell. Technol., 1 (2022).
53. C. Deng, L. Zhang and H. Deng, CAAI Trans. Intell. Technol., 7(2),268 (2022).
54. S. Sharma, K. Verma and P. Hardaha, J. Comput. Cognitive Eng.,2(2), 155 (2023).
55. Z. Chen, J. Comput. Cognitive Eng., 1(3), 103 (2022).
56. R. Hanif, S. Mustafa, S. Iqbal and S. Piracha, J. Comput. Cognitive Eng., 2(2), 143 (2023).