ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 31, 2022
Revised October 13, 2022
Accepted October 19, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Correlation and thermal conductivity sensitivity analysis of ternary hybrid nanofluids containing CuO and TiO2 nanoparticles and multi-walled carbon nanotubes

1Nanfluid Advanced Research Team, Tehran, Iran 2School of Chemistry, Damghan University, Damghan, Iran 3Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr
Toghraee@iaukhsh.ac.ir
Korean Journal of Chemical Engineering, September 2023, 40(9), 2312-2320(9), 10.1007/s11814-022-1320-z
downloadDownload PDF

Abstract

The use of substandard nanofluids (NFs) in various industries causes the depreciation of industrial parts and shortens the life of the parts. Therefore, the researchers in this study will help to improve the performance of industrial equipment by preparing and examining a special hybrid nanofluid (HNF). The current research is divided into two experimental and theoretical parts. First, a ternary hybrid nanofluid (THNF) with three nanoparticles (NPs) CuO, MWCNT and TiO2 with specific ratios and solid volume fraction (SVF) in water was prepared and produced. Then, the thermal conductivity (TC) of the produced nanofluid (NF) is measured by KD2 pro at different temperatures and SVFs. The results show that temperature and SVF are directly related to thermal conductivity enhancement (TCE). The maximum TC of the desired THNF is equal to 35.60% at SVF=1.65% and T=50 o C. In the theory part, using the response surface method (RSM), a very accurate correlation relationship R2 =0.9986 is provided. Also, the sensitivity of relative thermal conductivity (RTC) to changes of +10% SVF is presented, and the maximum deviation for the studied THNF is equal to 0.95%

References

1. M. Mansouri, M. Nademi, M. Ebrahim Olya and H. Lotfi, JCHR, 7(1), 19 (2017).
2. H. Dehghani Ashkezari, H. Sid Kalal, H. Hoveidi, M. R. Almasian and M. Ashoor, CJES, 15(1), 1 (2017).
3. M. A. Asif, JRSET, 6(04), 21 (2018).
4. N. K. A. Dwijendra, I. Patra, Y. M. Ahmed, Y. M. Hasan, Z. M.Najm, Z. I. Al Mashhadani and A. Kumar, Monatsh. fur Chem.,153(10), 873 (2022).
5. D. Domyati, Eur. Chem. Bull., 11(2), 1 (2022).
6. Y. Zhang, H. N. Li, C. Li, C. Huang, H. M. Ali, X. Xu, C. Mao, W.Ding, X. Cui, M. Yang, T. Yu, M. Jamil, M. K. Gupta, D. Jia and Z.Said, Friction, 10, 803 (2022).
7. S. Alidoust, M. Zamani and M. Jabbari, IJC, 10(4), 295 (2020).
8. Y. Wang, C. Li, Y. Zhang, M. Yang, B. Li, L. Dong and J. Wang, Int.J. Precis. Eng. Manuf. - Green Technol., 5(2), 327 (2018).
9. Z. Guo, J. Yang, Z. Tan, X. Tian and Q. Wang, Int. J. Heat Mass Transf., 174, 121296 (2021).
10. A. B. W. Putra, Int. J. Inf. Commun. Technol., 8(2), 9 (2020).
11. M. Yang, C. Li, Y. Zhang, D. Jia, X. Zhang, Y. Hou and J. Wang,Int. J. Mach. Tools Manuf., 122, 55 (2017).
12. M. Yang, C. Li, Y. Zhang, D. Jia, R. Li, Y. Hou and J. Wang, Ceram.Int., 45(12), 14908 (2019).
13. X. Cui, C. Li, Y. Zhang, W. Ding, Q. An, B. Liu, H. N. Li, Z. Said, S.Sharma, R. Li and S. Debnath, Front. Mech. Eng., 18, 3 (2023).
14. M. Liu, C. Li, Y. Zhang, Q. An, M. Yang, T. Gao and S. Sharma,Front. Mech. Eng., 16(4), 649 (2021).
15. J. Müssig and N. Graupner, Progress in Adhesion and Adhesives, 6 69 (2021).
16. M. Afrand, D. Toghraie and B. Ruhani, Exp. Therm. Fluid Sci., 77,38 (2016).
17. H. Watandost, J. Achak and A. Haqmal, IJIRMS, 4(4), 191 (2021).
18. B. Ruhani, M. Taheri Andani, A. M. Abed, N. Sina, G. Fadhil Smaisim, S. K. Hadrawi and D. Toghraie, Heliyon, 8(11), e11373 (2022).
19. Y. F. Al-Khafaji, M. R. Al-Lami, A. S. Abbas, A. M. E. E. R. Al-Ameri and A. F. A. Mousa, Asian J. Chem., 30(2), 460 (2018).
20. S. Rostami, D. Toghraie, B. Shabani, N. Sina and P. Barnoon, J.Therm. Anal. Calorim., 143(2), 1097 (2021).
21. M. H. Esfe and A. A. A. Arani, J. Mol. Liq., 259, 227 (2018).
22. T. J. Choi, S. H. Kim, S. P. Jang, D. J. Yang and Y. M. Byeon, J. Therm.Anal. Calorim., 180, 115780 (2020).
23. S. E. Ghasemi, A. A. Ranjbar, M. J. Hoseini and S. Mohsenian, J.Mater. Res. Technol., 15, 2276 (2021).
24. T. Wen, G. Zhu, K. Jiao and L. Lu, Int. J. Heat Mass Transf., 178,121617 (2021).
25. M. H. Esfe, M. K. Amiri and A. Alirezaie, J. Therm. Anal. Calorim.,134(2), 1113 (2018).
26. C. Qi, T. Chen, J. Tu and Y. Yan, Int. J. Energy Res., 44(13), 10628 (2020).
27. M. Zadkhast, D. Toghraie and A. Karimipour, J. Therm. Anal. Calorim., 129(2), 859 (2017).
28. G. Wang, C. Qi and J. Tang, J. Therm. Anal. Calorim., 141(1), 15 (2020).
29. J. C. Maxwell, Clarendon Press, 1 (2008).
30. S. U. Choi and J. A. Eastman, Argonne National Lab. (ANL),Argonne, IL (United States) (1995).
31. C. Qi, J. Tang, Z. Ding, Y. Yan, L. Guo and Y. Ma, Int. Commun.Heat Mass Transf., 109, 104349 (2019).
32. M. H. Esfe, H. Rostamian and M. R. Sarlak, J. Mol. Liq., 254, 406 (2018).
33. A. Asadi, A. N. Bakhtiyari and I. M. Alarifi, Eng. Comput., 37(4),3813 (2021).
34. H. Adun, D. Kavaz, M. Dagbasi, H. Umar and I. Wole-Osho, Powder Technol., 394, 1121 (2021).
35. K. Y. Leong, K. K. Ahmad, H. C. Ong, M. J. Ghazali and A. Baharum, Renew. Sustain. Energy Rev., 75, 868 (2017).
36. Z. Tang, C. Qi, L. Zhang and Z. Tian, Transp. Porous Media, 142,599 (2022).
37. T. Ambreen and M. H. Kim, Appl. Energy, 264, 114684 (2020).
38. Z. Li, R. Kalbasi, Q. Nguyen and M. Afrand, Powder Technol., 367,464 (2020).
39. A. Moradi, M. Zareh, M. Afrand and M. Khayat, Powder Technol.,362, 578 (2020).
40. A. Asadi and F. Pourfattah, Powder Technol., 343, 296 (2019).
41. M. H. Esfe, Appl. Therm. Eng., 126, 559 (2017).
42. M. Hemmat Esfe, J. Therm. Anal. Calorim, 127(3), 2125 (2017).
43. A. Akhgar and D. Toghraie, Powder Technol., 338, 806 (2018).
44. M. H. K. Darvanjooghi and M. N. Esfahany, Int. Commun. Heat Mass Transf., 77, 148 (2016).
45. M. Afrand, Appl. Therm. Eng., 110, 1111 (2017).
46. S. Alidoust, F. AmoozadKhalili and S. Hamedi, Colloids Surf. A:Physicochem. Eng. Asp., 645, 128625 (2022).
47. A. Parsian and M. Akbari, J. Therm. Anal. Calorim., 131(2), 1605 (2018).
48. M. Hemmat Esfe, S. Esfandeh and M. Rejvani, J. Therm. Anal. Calorim., 131(2), 1437 (2018).
49. M. Vafaei, M. Afrand, N. Sina, R. Kalbasi, F. Sourani and H. Teimouri, Phys. E: Low-Dimens. Syst. Nanostructures, 85, 90 (2017).
50. D. J. Thevenard and R. G. Humphries, ASHRAE Trans., 111, 457 (2005).
51. F. Ahmad, CAAI Trans. Intell. Technol., 7(2), 200 (2022).
52. J. Khan, E. Lee and K. Kim, CAAI Trans. Intell. Technol., 1 (2022).
53. C. Deng, L. Zhang and H. Deng, CAAI Trans. Intell. Technol., 7(2),268 (2022).
54. S. Sharma, K. Verma and P. Hardaha, J. Comput. Cognitive Eng.,2(2), 155 (2023).
55. Z. Chen, J. Comput. Cognitive Eng., 1(3), 103 (2022).
56. R. Hanif, S. Mustafa, S. Iqbal and S. Piracha, J. Comput. Cognitive Eng., 2(2), 143 (2023).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로