Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 20, 2022
Revised February 7, 2023
Accepted March 14, 2023
- Acknowledgements
- Support from the Basic Science Research Program through the Korea Coating Technology Center is gratefully acknowledged.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Automated paint coating using two consecutive images with CNN regression
Abstract
Although new coating development for improved surface protection is necessary, its manual application
has been a difficult problem to solve. In this study, a convolution neural network (CNN) was used for prediction of the
painting gun operation. Painting videos were converted to sequential images, of which two consecutive images were
associated with the gun position in the next time step. The inputs were implemented in a regression CNN training,
which was used to calculate the position of the spray gun at the next moment. Recursive image utilization provides the
prediction of spray gun movement in real-time applications. The statistical measures of the prediction and true values
of gun movement using test data indicate that the proposed CNN gives comparable outcomes to similar applications of
the CNN. The exhibition of simulated painting of a rectangle and a semicircle demonstrates the usefulness of the proposed CNN application for spray gun painting
References
2. V. Prabakaran, A. V. Le, P. T. Kyaw, R. E. Mohan, P. Kandasamy,T. N. Nguyen and M. Kannan, IEEE Access, 8, 193790 (2020).
3. Y. A. Wang, X. P. Xie and X. H. Lu, Coatings, 10, 475 (2020).
4. D. O. Melinte, A. M. Travediu and D. N. Dumitriu, Appl. Sci.-Basel,10, 7301 (2020).
5. J. Champ, A. Mora-Fallas, H. Goeau, E. Mata-Montero, P. Bonnet and A. Joly, Appl. Plant Sci., 8, 1 (2020).
6. Q. Zhang, E. Hann, K. Werys, C. Wu, I. Popescu, E. Lukaschuk, A.Barutcu, V. M. Ferreira and S. K. Piechnik, Artif. Intell. Med., 110,101955 (2020).
7. S. P. Singh, L. P. Wang, S. Gupta, H. Goli, P. Padmanabhan and B.Gulyas, Sensors, 20, 5097 (2020).
8. M. K. Abd-Ellah, A. I. Awad, A. A. M. Khalaf and H. F. A. Hamed,Eurasip J. Image and Video Process., 2018, 1 (2018).
9. C. B. Murthy, M. F. Hashmi, N. D. Bokde and Z. W. Geem, Appl.Sci.-Basel, 10, 3280 (2020).
10. A. Seshadri, S. Mahadevan and V. Muniyandi, Korean J. Chem. Eng.,32, 826 (2015).
11. N. Dehghan, M. A. Tavanaie and P. Payvandy, Korean J. Chem. Eng.,32, 1928 (2015).
12. C. Kendrick, K. Tan, K. Walker and M. H. Yap, Symmetry-Basel,10, 230 (2018).
13. J. Naranjo-Torres, M. Mora, R. Hernandez-Garcia, R. J. Barrientos, C. Fredes and A. Valenzuela, Appl. Sci.-Basel, 10, 3443 (2020).
14. Z. Z. Zhang, E. Kayacan, B. Thompson and G. Chowdhary, Auton.Robot., 44, 1289 (2020).
15. S. Back, G. Cho, J. Oh, X. T. Tran and H. Oh, J. Intell. Robot. Syst.,100, 1195 (2020).
16. H. Y. Lee, H. W. Ho and Y. Zhou, J. Intell. Robot. Syst., 101, 5 (2021).
17. H. Kim, A. L. Gebreselassie, S. Dan and D. Shin, Korean J. Chem.Eng., 35, 1231 (2018).
18. C. Joshi and R. S. Singhal, Korean J. Chem. Eng., 35, 195 (2018).
19. A. Ajagekar and F. Q. You, Korean J. Chem. Eng., 39, 811 (2022).
20. M. R. S. Emami, M. K. Amiri and S. P. G. Zaferani, Korean J. Chem.Eng., 38, 316 (2021).
21. A. Daghbandan, B. A. Souraki and M. A. Zadeh, Korean J. Chem.Eng., 39, 628 (2022).
22. F. Hosseini and M. Rahimi, Korean J. Chem. Eng., 37, 411 (2020).
23. Q. Liu and F. H. Duan, J. Intell. Robot. Syst., 99, 115 (2020).
24. Q. Zhou and X. Li, J. Intell. Robot. Syst., 98, 603 (2020).
25. T. H. Nguyen, N. T. Mai, V. R. M. Reddy, J. H. Jung and N. T. N.Truong, Korean J. Chem. Eng., 37, 1803 (2020).
26. A. Krishnan, Korean J. Chem. Eng., 39, 2861 (2022).
27. A. Noreen, K. M. Zia, M. Zuber, S. Tabasum and M. J. Saif, Korean J. Chem. Eng., 33, 388 (2016).
28. B. J. Jeon, S. W. Kang and J. K. Lee, Korean J. Chem. Eng., 23, 854 (2006).
29. H. Lee, D. S. Jeong, T. Mun, B. Pejjai, V. M. Reddy, T. J. Anderson and C. Park, Korean J. Chem. Eng., 33, 2486 (2016).
30. M. Kuhn and K. Johnson, Applied predictive modeling, Springer,New York (2013).
31. Y. LeCun, K. Kavukcuoglu and C. Farabet, Proceedings of 2010 IEEE Intern. Symp. Circ. Syst., 11463159 (2010).
32. S. Ioffe and C. Szegedy, arXiv, 150203167 (2015).
33. B. Liu, Y. Zhang, D. J. He and Y. X. Li, Symmetry-Basel, 10, 11 (2018).
34. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, J. Mach. Learn. Res., 15, 1929 (2014).
35. X. Glorot and Y. Bengio, Proceedings of the thirteenth intern. Conf.artif. Intell. Stat., 249 (2010).
36. C. Szegedy, A. Toshev and D. Erhan, Adv. Neural Inf. Process. Sys.,Curran Associates Inc., San Francisco, 2553 (2013).
37. F. Jia, X. C. Tai and J. Liu, Inverse Probl. Imaging, 14, 891 (2020).
38. D. Wen, P. Li, Y. H. Zhou, Y. B. Sun, J. Xu, Y. J. Liu, X. L. Li, J. H. Li,Z. J. Bian and L. Wang, IEEE Trans. Neural Syst. Rehabil. Eng., 28,1702 (2020).
39. W. R. Johnson, J. Alderson, D. Lloyd and A. Mian, IEEE Trans.Biomed. Eng., 66, 689 (2019).
40. T. Asuroglu and H. Ogul, Comput. Meth. Programs Biomed., 198,105816 (2021).
41. S. Xu, H. Z. Lu, C. Ference and Q. Q. Zhang, Electronics, 10, 80 (2021).
42. P. Fervers, F. Fervers, A. Jaiswal, M. Rinneburger, M. Weisthoff, P.Pollmann-Schweckhorst, J. Kottlors, H. Carolus, S. Lennartz, D.Maintz, R. Shahzad and T. Persigehl, Quant. Imaging Med. Surg.,12, 5156 (2022).
43. J. M. Shen, P. Liu, J. Xia, Y. J. Zhao and Y. Dong, Remote Sens., 14,3939 (2022).
44. X. Murray, A. Apan, R. Deo and T. Maraseni, Geocarto Int., 1 (2022).
45. D. S. Joseph, P. M. Pawar and R. Pramanik, Multimed. Tools Appl.(2022), doi:10.1007/s11042-022-14004-6.
46. A. Namoun, A. Tufail, M. Y. Khan, A. Alrehaili, T. A. Syed and O.BenRhouma, Sustainability, 14, 13578 (2022).
47. M. Sasaki, J. Muguro, F. Kitano, W. Njeri and K. Matsushita, Appl.Sci.-Basel, 12, 10277 (2022).
48. F. Fardian, M. Mawarpury, K. Munadi and F. Arnia, IEEE Access,10, 96476 (2022).
49. S. Maurya, S. Tiwari, M. C. Mothukuri, C. M. Tangeda, R. N. S.Nandigam and D. C. Addagiri, Biomed. Signal Process. Control, 80,104398 (2023).
50. H. Z. Jin, C. Yu, Z. B. Gong, R. J. Zheng, Y. A. Zhao and Q. W. Fu,Biomed. Signal Process. Control, 79, 104104 (2023).
51. X. H. Ren, T. T. Li, X. J. Yang, S. Wang, S. Ahmad, L. Xiang, S. R.Stone, L. H. Li, Y. Q. Zhan, D. G. Shen and Q. Wang, IEEE J.Biomed. Health Inform., 23, 2030 (2019).
52. D. Karimi, G. Nir, L. Fazli, P. C. Black, L. Goldenberg and S. E. Salcudean, IEEE J. Biomed. Health Inform., 24, 1413 (2020).
53. T. Kretz, K.R. Muller, T. Schaeffter and C. Elster, IEEE Trans. Biomed.Eng., 67, 3317 (2020).
54. K. Zhang, N. Liu, X. F. Yuan, X. Y. Guo, C. Gao, Z. B. Zhao and Z. Y. Ma, IEEE Trans. Circuits Syst. Video Technol., 30, 3140 (2020).
55. G. Ancione, R. Saitta, P. Bragatto, G. Fiumara and M. F. Milazzo,Sustainability, 14, 6156 (2022)