ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 5, 2022
Revised December 25, 2022
Accepted January 31, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Bio-based composite as phase change material including spent coffee grounds and beeswax paraffin

1Laboratoire de Sciences des Matériaux et de l’Environnement (LMSE), Université de Sfax, Tunisi 2Laboratoire des Matériaux Multifonctionnels et Applications (LaMMA), Université de Sfax, Tunisia 3University of Technology and Applied Sciences - Sohar, P.O. Box: 135, Postal Code:311, Sohar, Sultanate of Oman 4Division of Engineering Materials (KMAT), Linköping University, 581 83, Sweden
abdotrg@yahoo.fr, makki.abdmouleh@yahoo.fr
Korean Journal of Chemical Engineering, September 2023, 40(9), 2342-2355(14), 10.1007/s11814-023-1448-5
downloadDownload PDF

Abstract

New types of bio-composite phase change materials (BCPCM) with improved thermal properties were made from spent ground coffee powder (C), beeswax (W) and low density polyethylene (LDPE). Beeswax is a relatively accessible phase change material of organic origin, with a significantly lower unit price compared to conventional phase change materials (PCM). The observations by SEM and FTIR spectroscopy showed that the BCPCMs were physically combined. Through these techniques, it was discovered that ground coffee was effectively impregnated with natural wax and LDPE. According to the thermal gravimetric analysis (TGA), the thermal stability of BCPCM was improved, due to the use of waste coffee grounds, in the working temperature range. The biocomposite possesses excellent performance as characterized by 136.9 J/g (W70C10PE20)>, 127.31 J/g (W70C20PE10)>, 126.95 J/g (W70C30)>, 121.08 J/g (W70PE30) of latent heat storage and tends to decrease the supercooling degree as compared with pure beeswax during melting/solidification process. By adding LDPE to the PCM, the melting time is reduced, demonstrating an improvement in thermal energy storage (TES) reaction time to the demand. The experimental results showed that the fraction of oils (12%) in spent ground coffee powder can participate in the improvement of the thermal properties of BCPMC. The use of biocompatible PCM by-products is suitable for applications in the field of heat storage because it is affordable and environmentally beneficial.

References

1. A. Korjenic, J. Zach and J. Hroudová, Energy Build., 116, 45 (2016).
2. A. Putra, K. H. Or, M. Z. Selamat, M. J. M. Nor, M. H. Hassan and I. Prasetiyo, Appl. Acoust., 136, 9 (2018).
3. S. K. Karmee, Waste Manag., 72, 240 (2018).
4. A. Trigui, M. Karkri, C. Boudaya, Y. Candau and L. Ibos, Compos.Part B Eng., 49, 22 (2013).
5. C. Moulahi, A. Trigui, C. Boudaya and M. Karkri, J. Therm. Compos. Mater., 30 (2017).
6. S. H. Lee, S. J. Yoon, Y. G. Kim, Y. C. Choi, J. H. Kim and J. G. Lee,Korean J. Chem. Eng., 24, 332 (2007).
7. G. Alva, Y. Lin, L. Liu and G. Fang, Energy Build., 144, 276 (2017).
8. C. Moulahi, A. Trigui, M. Karkri and C. Boudaya, Compos. Struct.,149, 69 (2016).
9. I. Chriaa, A. Trigui, M. Karkri, I. Jedidi, M. Abdelmouleh and C.Boudaya, Appl. Therm. Eng., 171, 115072 (2020).
10. F. Xue, X. Jin, W. Wang, X. Qi, J. Yanga and Y. Wang, Nanoscale, 12,4005 (2020).
11. F. Asinger, Paraffins; chemistry and technology, Pergamon Press.(1967).
12. A. I. de Barros, F. H. Nunes and M. a Costa, Manual de boas práticas na produção de cera de abelha, 1 (2009).
13. A. Sharma, V. V. Tyagi, C. R. Chen and D. Buddhi, Renew. Sustain. Energy Rev., 13, 318 (2009).
14. V. Saydam and X. Duan, J. Therm. Anal. Calorim., 135, 1135 (2019).
15. J. A. Baptista and M. E. S. Eusébio and M. M. Pereira, J. Therm.Anal. Calorim., 145, 27 (2021).
16. Y. Hong and G. Xin-shi, Sol. Energy Mater. Sol. Cells., 64, 37 (2000).
17. H. Inaba and P. Tu, Heat Mass Transf., 32, 307 (1997).
18. A. Trigui, M. Karkri and I. Krupa, Energy Convers. Manag., 77,586 (2014).
19. I. Krupa, G. Miková and A. S. Luyt, Eur. Polym. J., 43, 4695 (2007).
20. A. Jering, J. Günther, A. Raschka and M. Carus, ETC/SCP Rep., 1 (2010).
21. M. Maleki, A. Imani, R. Ahmadi, H. Banna Motejadded Emrooz and A. Beitollahi, Appl. Energy, 258, 114108 (2020).
22. R. Campos-Vega, G. Loarca-Piña, H. A. Vergara-Castañeda and B.Dave Oomah, Trends Food Sci. Technol., 45, 24 (2015).
23. S. I. Mussatto, E. M. S. Machado, S. Martins and J. A. Teixeira, Food Bioprocess Technol., 4, 661 (2011).
24. S. Kim, S. J. Chang, O. Chung, S.-G. Jeong and S. Kim, Energy Build., 70, 472 (2014).
25. D. García-García, A. Carbonell, M. D. Samper, D. García-Sanoguera and R. Balart, Compos. Part B Eng., 78, 256 (2015).
26. O. Das, D. Bhattacharyya, D. Hui and K.-T. Lau, Compos. Part B Eng., 106, 120 (2016).
27. S. Calligaris, M. Munari, G. Arrighetti and L. Barba, Lipid Sci. Technol., 111, 1270 (2009).
28. C. S. Wu, Polym. Degrad. Stab., 121, 51 (2015).
29. L. F. Ballesteros, M. A. Cerqueira, J. A. Teixeira and S. I. Mussatto,Carbohydr. Polym., 127, 347 (2015).
30. G. M. A. Khan, M. S. A. Shams, M. R. Kabir, M. A. Gafur, M. Terano and M. S. Alam, Appl. Polym. Sci., 128, 1020 (2013).
31. N. Saba, M. Jawaid, O. Y. Alothman and M. T. Paridah, Constr.Build. Mater., 106, 149 (2016).
32. T. Väisänen, O. Das and L. Tomppo, J. Clean. Prod., 149, 582 (2017).
33. J. Yoo, S. J. Chang, S. Wi and S. Kim, Chemosphere, 235, 626 (2019).
34. E. Pagalan, M. Sebron, S. Gomez, S. J. Salva, R. Ampusta, A. J. Macarayo, C. Joyno, A. Ido and R. Arazo, Ind. Crops Prod., 145, 111953 (2020).
35. X. Hu, H. Huang, Y. Hu, X. Lu and Y. Qin, Sol. Energy Mater. Sol.Cells, 219, 110790 (2021).
36. M. Rinaudo, Prog. Polym. Sci., 31, 603 (2006).
37. A. El Kadib and M. Bousmina, Chem. A Eur. J., 18, 8264 (2012).
38. P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang, R. I. Boughton, C. P.Wong, H. Liu and B. Yang, Nano Energy, 15, 9 (2015).
39. R. M. Obaidat, B. M. Tashtoush, M. F. Bayan, R. T. Al Bustami and M. Alnaief, AAPS PharmSciTech, 16, 1235 (2015).
40. R. Yu, Y. Shi, D. Yang, Y. Liu, J. Qu and Z.-Z. Yu, ACS Appl. Mater.Interfaces, 9, 21809 (2017).
41. S. Takeshita and S. Yoda, Chem. Mater., 27, 7569 (2015).
42. A. El Kadib, ChemSusChem, 8, 217 (2015).
43. L. Boussaba, A. Foufa, S. Makhlouf, G. Lefebvre and L. Royon,Constr. Build. Mater., 185, 156 (2018).
44. H. Essabir, M. Raji, S. A. Laaziz, D. Rodrique, R. Bouhfid and A. el kacem Qaiss, Compos. Part B Eng., 149, 1 (2018).
45. I. Krupa, Z. Nógellová, Z. Špitalský, M. Malíková, P. Sobolčiak, H. W.Abdelrazeq, M. Ouederni, M. Karkri, I. Janigová and M. A. S. A.Al-Maadeed, Thermochim. Acta, 614, 218 (2015).
46. M. A. Al Maadeed, S. Labidi, I. Krupa and M. Ouederni, Arab. J.Chem., 8, 388 (2015).
47. V. Y. Birshtein and V. M. Tul’chinskii, Chem. Nat. Compd., 13, 232 (1977).
48. I. B. Perry, T. F. Brewer, P. J. Sarver, D. M. Schultz, D. A. DiRocco and D. W. C. MacMillan, Nature, 560, 70 (2018).
49. M. A. Abdalla, Int. J. Eng. Appl. Sci., 2, 85 (2015).
50. D. J. Lyman, R. Benck, S. Dell, S. Merle and J. Murray-Wijelath, JAgric. Food Chem., 51, 3268 (2003).
51. A. E. Atabani, S. Shobana, M. N. Mohammed, G. Uğuz, G. Kumar,
S. Arvindnarayan, M. Aslam and A. H. Al-Muhtaseb, Fuel, 244,419 (2019).
52. A. Bucio, R. Moreno-Tovar, L. Bucio, J. Espinosa-Dávila, F. Anguebes-Franceschi, Coatings, 11, 261 (2021).
53. L. F. Ballesteros, J. A. Teixeira and S. I. Mussatto, Food Bioprocess Technol., 7, 3493 (2014).
54. H. Vahabi, M. Jouyandeh, T. Parpaite, M. R. Saeb and S. Ramakrishna, Coatings, 11, 1021 (2021).
55. A. Abdelkhalik, H. Elsayed, M. Hassan, M. Nour, A. B. Shehata and M. Helmy, Egypt. J. Pet., 27, 131 (2018).
56. A. Trigui, M. Karkri, L. Peña, C. Boudaya, Y. Candau, S. Bouffi and F. Vilaseca, J. Compos. Mater., 47, 1387 (2013).
57. T. Qian, J. Li, X. Min, Y. Deng, W. Guan and H. Ma, Energy, 82,333 (2015).
58. M. H. Zahir, M. M. Rahman, K. Irshad, M. M. Rahman, Nanomaterials, 9, 1773 (2019).
59. I. Chriaa, M. Karkri, A. Trigui, I. Jedidi, M. Abdelmouleh and C.Boudaya, Polymer, 212, 123128 (2021).
60. G. R. Solomon, S. Karthikeyan and R. Velraj, Appl. Therm. Eng.,52, 505 (2013).
61. A. Nejman, E. Gromadzińska, I. Kamińska and M. Cieślak, Molecules, 25, 122 (2020).
62. A. Trigui, M. Karkri, C. Boudaya, Y. Candau, L. Ibos and M. Fois,J. Compos. Mater., 48, 49 (2014).
63. A. Trigui, M. Abdelmouleh and C. Boudaya, RSC Adv., 12, 21990 (2022)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로