Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 28, 2022
Revised April 3, 2023
Accepted April 7, 2023
- Acknowledgements
- This work was supported by the Natural Science Foundation of Hunan Province (2020JJ4509), Key Projects of the Education Department of Hunan Province (21A0345), Key Laboratory of Mineral Cleaner Production and Exploit of Green Functional Materials in Hunan Province, P. R. China.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Synthesis and characterization of epoxy resin-based ion-imprinted polymer for selective removal of copper ions
Abstract
With the continuous development of the concept of green chemistry, more attention is being paid to the
selective capture of copper (II) from wastewater and its recovery and reuse. Ion imprinting technology is widely used to
remove heavy metals from aqueous solutions due to its high selectivity. In this work, Cu(II) imprinted polymer
(Cu(II)-IIP) was prepared by stepwise polymerization using Cu(II) ions as the template ions, PEG-600 as a pore-forming agent, epoxy resin as the carrier, and polyethylene polyamine as curing agent and complexing agent. The influences of solution pH, reaction temperature, reaction time and initial solubility of metal ions on its adsorption ability
were systematically examined. The studies showed that the maximum adsorption quantity was 91.58 mg/g when pH=5
and T=318 K. The adsorption for Cu(II) of the Cu(II)-IIP was considered to be the monolayer chemisorption and
spontaneous endothermic process. In the presence of multiple coexisting ions, Cu(II)-IIP had high selectivity for
Cu(II). After five adsorption-desorption cycles, high removal rate could still be obtained, which means that the material provides a feasible method for treating wastewater containing Cu(II) ions
References
2. H. Li, D. Yao, Q. Feng, H. Zeng, J. Liang, Z. Zhou, Y. Tian, N.Zhou and X. Lu, Desalin. Water Treat., 118, 195 (2018).
3. S. Zhu, C. Xi, Y. Zhang and F. Zhang, ACS Appl. Polym. Mater., 4,9284 (2022).
4. S. He, F. Zhang, S. Cheng and W. Wang, ACS Sustain. Chem. Eng.,4, 3948 (2016).
5. N. Zhou, H. Chen, Q. Feng, D. Yao, H. Chen, H. Wang, Z. Zhou,H. Li, Y. Tian and X. Lu, J. Clean. Prod., 165, 221 (2017).
6. P. Zhou, H. Yuan, L. Ou and Z. Peng, J. Macromol. Sci. A, 56, 717 (2019).
7. J. Ma, Y. Xiong, X. Dai and F. Yu, Chem. Eng. J., 380, 122387 (2020).
8. K. W. Jung, S. Y. Lee, J. W. Choi and Y. J. Lee, Chem. Eng. J., 369,529 (2019).
9. G. Stando, P. M. Hannula, B. Kumanek, M. Lundström and D.Janas, Water Resour. Ind., 26, 100156 (2021).
10. Z. Yang, T. Hou, J. Ma, B. Yuan, Z. Tian, W. Yang and N. J. Graham, Water Res., 177, 115775 (2020).
11. Y. Li, C. Liu, P. Xu, M. Li, M. Zen and S. Tang, Chem. Eng. J., 243,108 (2014).
12. K. Chen and W. Zeng, Polymers, 13, 962 (2021).
13. H. Cao, P. Yang, T. Ye, M. Yuan, J. Yu, X. Wu, F. Yin, Y. Li and F Xu, Chemosphere, 278, 130369 (2021).
14. L. Qin, Y. Zhao, L. Wang, L. Zhang, S. Kang, W. Wang, T. Zhang and S. Song, Chemosphere, 252, 126560 (2020).
15. G. Sharma and B. Kandasubramanian, J. Chem. Eng. Data, 65, 396 (2020).
16. F. Shafizadeh, M. Taghizadeh and S. Hassanpour, Environ. Sci. Pollut. Res., 26, 18493 (2019).
17. J. Shah and M. R. Jan, J. Anal. Chem., 73, 1146 (2018).
18. Z. Wang, D. Kong, N. Qiao, N. Wang, Q. Wang, H. Liu, Z. Zhou and Z. Ren, Appl. Surf. Sci., 457, 981 (2018).
19. B. Ara, M. Muhammad, Z. Rani, T. U. H. Zia and K. Gul, Desalin. Water Treat., 191, 173 (2020).
20. M. Monier, I. Youssef and A. El‐Mekabaty, Polym. Int., 69, 31 (2020).
21. P. Wei, Z. Li, X. Zhao, R. Song and Z. Zhu, J. Taiwan Inst. Chem.E., 113, 107 (2020).
22. S. Wang and R. Zhang, Sep. Sci. Technol., 42, 1079 (2007).
23. S. Wang and S. Wang, J. AOAC Int., 99, 279 (2016).
24. S. Wang and R. Zhang, Anal. Chim. Acta., 575, 166 (2006).
25. Z. Bahadır, G. Kültür, M. Yazar, D. Çakır and C. Duran, Anal.Lett., 55, 1847 (2022).
26. Q. Wang, S. Zhu, C. Xi, Y. Shen, Y. Xiang and F. Zhang, J. Appl.Polym. Sci., 139, 51866 (2021).
27. Z. Zhou, Z. Xu, Q. Feng, D. Yao, J. Yu, D. Wang, S. Lv, Y. Liu, N.Zhou and M. Zhong, J. Clean. Prod., 187, 996 (2018).
28. S. Rais, A. Islam, I. Ahmad, S. Kumar, A. Chauhan and H. Javed,Food Chem., 334, 127563 (2020).
29. X. Huang, J. Song, H. Li, M. Gong and Y. Zhang, J. Hazard. Mater.,365, 53 (2019).
30. J. W. Yu, J. Jung, Y. M. Choi, J. H. Choi, J. Yu, J. K. Lee, N. H. You and M. Goh, Polym. Chem., 7, 36 (2016).
31. L. Zhu, R. Hu, Y. Xiang, X. Yang, Z. Chen, L. Xiong, X. Wu, Z. He and W. Lei, Int. J. Energy Res., 45, 6002 (2021).
32. M. Monier, A. A. H. Bukhari and N. H. Elsayed, Int. J. Biol. Macromol., 155, 795 (2020).
33. H. Liu, D. Kong, W. Sun, Q. Li, Z. Zhou and Z. Ren, Chem. Eng. J.,303, 348 (2016).
34. P. Wei, Z. Zhu, R. Song, Z. Li and C. Chen, Electrochim. Acta, 317, 93 (2019).
35. J. Fei, X. Wu, Y. Sun, L. Zhao, H. Min, X. Cui, Y. Chen, S. Liu, H. Lian and C. Li, Anal. Chim. Acta, 1162, 338477 (2021).
36. Q. Wang, S. Zhu, C. Xi, B. Jiang and F. Zhang, ACS Omega, 7, 12231 (2022).
37. K. Suzuki, T. Kato, S. Fuchida and C. Tokoro, Chem. Geol., 550, 119744 (2020).
38. Z. Ren, X. Zhu, J. Du, D. Kong, N. Wang, Z. Wang, Q. Wang, W.Liu, Q. Li and Z. Zhou, Appl. Surf. Sci., 435, 574 (2018).
39. Q. Huang, M. Liu, J. Zhao, J. Chen, G. Zeng, H. Huang, J. Tian, Y.Wen, X. Zhang and Y. Wei, Appl. Surf. Sci., 427, 535 (2018).
40. Z. Cheng, J. Liao, B. He, F. Zhang, F. Zhang, X. Huang and L. Zhou,ACS Sustain. Chem. Eng., 3, 1677 (2015).
41. A. Islam and A. Chauhan, Environ. Sci. Pollut. Res., 29, 69068 (2022).
42. H. Liu, Q. Wang and F. Zhang, ACS Omega, 5, 8816 (2020).
43. H. Tian, L. Mao, K. Li and H. Li, Sep. Sci. Technol., 56, 3136 (2021).
44. Y. He, P. Wu, W. Xiao, G. Li, J. Yi, Y. He, C. Chen, P. Ding and Y.Duan, PLoS One, 14, e0213377 (2019).
45. O. Duman, T. G. Polat, C. O. Diker and S. Tunc, Int. J. Biol. Macromol., 160, 823 (2020).
46. O. Duman, T. G. Polat and S. Tunc, J. Environ. Manage., 322, 116130 (2022).
47. H. Liu, F. Zhang and Z. Peng, Sci. Rep., 9, 3663 (2019).
48. Y. Pang, C. Zhao, Y. Li, Q. Li, X. Bayongzhong, D. Peng and T.Huang, Sci. Rep., 12, 4424 (2022).
49. M. V. Dinu, I. A. Dinu, M. M. Lazar and E. S. Dragan, Carbohydr.Polym., 186, 140 (2018).
50. N. H. Elsayed, M. Monier and R. A. S. Alatawi, Mater. Chem. Phys.,264, 124433 (2021).
51. Y. Dai, L. Zhou, X. Tang, J. Xi, J. Ouyang, Z. Liu, G. Huang and A.Adesina, Int. J. Biol. Macromol., 164, 4155 (2020).
52. R. Msaadi, G. Yilmaz, A. Allushi, S. Hamadi, S. Ammar, M. M.Chehimi and Y. Yagci, Polymers, 11, 286 (2019).
53. W. Zhang, M. Yun, Z. Yu, D. Chen and X. Li, Polym. Bull., 76,1861 (2018).
54. J. Wang and Z. Li, J. Hazard. Mater., 300, 18 (2015).
55. H. Cao, P. Yang, T. Ye, M. Yuan, J. Yu, X. Wu, F. Yin, Y. Li and F.Xu, Chemosphere, 278, 130369 (2021).