Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 5, 2024
Accepted March 17, 2024
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Heptafl uoroisopropyl Methyl Ether as a Low Global Warming Potential Alternative for Plasma Etching of SiC
Abstract
Heptafl uoroisopropyl methyl ether (HFE-347mmy) was used for SiC etching to evaluate low-GWP (global warming potential)
hydrofl uoroether as an alternative to SF 6 . SiC was etched in the HFE-347mmy/O 2 /Ar and SF 6 /O 2 /Ar plasmas, and the
etching characteristics were compared at various bias voltages. The etch rates of SiC in the HFE-347mmy/O 2 /Ar plasma
were higher than those in the SF 6 /O 2 /Ar plasma at low bias voltages (lower than − 500 V), whereas those in the SF 6 /O 2 /Ar
plasma were higher than those in the HFE-347mmy/O 2 /Ar plasma at high bias voltages (higher than − 600 V). The relative
amounts of F and O radicals in both plasmas imply that F is a major contributor to SiC etching at low bias voltages (lower
than − 500 V), whereas O is a major contributor at high bias voltages (higher than − 600 V) in the HFE-347mmy/O 2 /Ar and
SF 6 /O 2 /Ar plasmas. AFM measurements showed that the SiC etched in the HFE-347mmy/O 2 /Ar plasma exhibited smoother
surfaces than that etched in the SF 6 /O 2 /Ar plasma.
References
Technol. A 31 , 050805 (2013)
2. T. Dinh, H.-P. Phan, N. Kashaninejad, T.-K. Nguyen, D.V. Dao,
N.-T. Nguyen, Adv. Mater. Interfaces 5 , 1800764 (2018)
3. A. Kumar, M. Moradpour, M. Losito, W.-T. Franke, S. Ramasamy,
R. Baccoli, G. Gatto, Energies 15 , 9172 (2022)
4. P.H. Yih, V. Saxena, A.J. Steckl, Phys. Status Solidi B-Basic Res.
202 , 605 (2001)
5. P.H. Yih, A.J. Steckl, J. Electrochem. Soc. 140 , 1813 (1993)
6. P.H. Yih, A.J. Steckl, J. Electrochem. Soc. 142 , 312 (1995)
7. R. Wolf, R. Helbig, J. Electrochem. Soc. 143 , 1037 (1996)
8. J.B. Casady, E.D. Luckowski, M. Bozack, D. Sheridan, R.W. Johnson,
J.R. Williams, J. Electrochem. Soc. 143 , 1750 (1996)
9. B.-O. Cho, S.-W. Hwang, G.-R. Lee, S.H. Moon, J. Vac. Sci. Technol.
A 18 , 2791 (2000)
10. G.-R. Lee, S.-W. Hwang, J.-H. Min, S.H. Moon, J. Vac. Sci. Technol.
A 20 , 1808 (2002)
11. J.-H. Kim, C.-K. Kim, Korean J. Chem. Eng. 37 , 374 (2020)
12. J.-H. Kim, S.-W. Cho, C.J. Park, H. Chae, C.-K. Kim, Thin Solid
Films 637 , 43 (2017)
13. R. Chatterjee, S. Karecki, R. Reif, V. Vartanian, T. Sparks, J. Electrochem.
Soc. 149 , G276 (2002)
14. H.-K. Ryu, B.-S. Lee, S.-K. Park, I.-W. Kim, C.-K. Kim, Electrochem.
Solid-State Lett. 6 , C126 (2003)
15. Y. Chinzei, Y. Feurprier, M. Ozawa, T. Kikuchi, K. Horioka, T.
Ichiki, Y. Horiike, J. Vac. Sci. Technol. A 18 , 158 (2000)
16. J.-H. Kim, J.-S. Park, C.-K. Kim, Thin Solid Films 669 , 262
(2019)
17. S. You, J.-H. Kim, C.-K. Kim, Korean J. Chem. Eng. 39 , 63
(2022)
18. S. You, Y.J. Lee, H. Chae, C.-K. Kim, Coatings 12 , 679 (2022)