ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 4, 2023
Accepted November 21, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Isobaric Vapor–Liquid Equilibrium Data of Binary Mixtures of [Water + 2,3-butanediol] and [Water + 1,4-butanediol] at 40, 50, 60, 66.7, 80, and 101 kPa

Department of Chemical and Biomolecular Engineering , Sogang University 1Department of Chemical and Biological Engineering , Korea University 2Present Address: Doosan Corporation Electro-Materials ,
Korean Journal of Chemical Engineering, May 2024, 41(5), 1457-1466(10), https://doi.org/10.1007/s11814-024-00039-y

Abstract

Isobaric vapor–liquid equilibrium (VLE) data for two binary systems, water + 2,3-butanediol (2,3-BDO) and

water + 1,4-butanediol (1,4-BDO), were gathered using a customized Othmer still VLE apparatus at various pressures (40,

50, 60, 66.7, 80, and 101 kPa). In addition, the NRTL and UNIQUAC activity coeffi cient models were applied to correlate

the data obtained experimentally, and the parameters for these binary models were derived. The average absolute deviation

of temperature (AAD T ), AAD of vapor-phase composition (AAD y ), and root-mean-square deviation values were employed

to assess the agreement between the experimental results and the values calculated using the two modeling methods. The

total AAD y values for the water + 2,3-butanediol system were calculated to be 6.4 × 10 –3 (NRTL) and 2.2 × 10 –3 (UNIQUAC),

and for the water + 1,4-butanediol system, the values were 2.7 × 10 –3 (NRTL) and 2.5 × 10 –3 (UNIQUAC). The reliability of

the models was confi rmed by the close match between the calculated and experimental data. The Van Ness-Byer-Gibbs test

was conducted to evaluate the validity and thermodynamic consistency of the experimental results. The calculated values for

Δ P and Δ y in all systems were below 1.0, satisfying the thermodynamic consistency requirements. The information gained

from this study on the vapor–liquid equilibrium behavior of the water + 2,3-butanediol and water + 1,4-butanediol systems

is crucial for optimizing and designing their separation processes.

References

1. P. Gallezot, Chem. Soc. Rev. 41 , 1538 (2012)
2. E. Celińska, W. Grajek, Biotechnol. Adv. 27 , 715 (2009)
3. K.J. Wu, G.D. Saratale, Y.C. Lo, W.M. Chen, Z.J. Tseng, M.C.
Chang, B.C. Tsai, A. Su, J.S. Chang, Bioresour. Technol. 99 , 7966
(2008)
4. S. Garg, A. Jain, Bioresour. Technol. 51 , 103 (1995)
5. M.J. Syu, Appl. Microbiol. Biotechnol. 55 , 10 (2001)
6. X.J. Ji, H. Huang, P.K. Ouyang, Biotechnol. Adv. 29 , 351 (2011)
7. J.V. Haveren, E.L. Scott, J. Sanders, Biofuel Bioprod. Biorefi ning
2 , 41 (2008)
8. D.D. Faveri, P. Torre, F. Molinari, P. Perego, A. Converti, Enzyme
Microb. Technol. 33 , 708 (2003)
9. Toray Industries, Inc. US Patent 9,533,931 B2. https:// paten ts.
google. com/ patent/ US953 3931B2/ en (2017)
10. B.D. Ahn, S.H. Kim, Y.H. Kim, J.S. Yang, J. Appl. Polym. Sci.
82 , 2808 (2001)
11. D.P. Minh, M. Besson, C. Pinel, P. Fuertes, C. Petitjean, Top.
Catal. 53 , 1270 (2010)
12. J. Cheng, J. Li, L. Zheng, J. Agric. Food Chem. 69 , 10480 (2021)
13. Y. Zhu, J. Yang, F. Mei, X. Li, C. Zhao, Green Chem. 24 , 6450
(2022)
14. L.M. Vane, Biofuel Bioprod. Biorefi ning 2 , 553 (2008)
15. S.D. Birajdar, S. Rajagopalan, J.S. Sawant, S. Padmanabhan, Process
Biochem. 50 , 1449 (2015)
16. Y.Y. Wu, K. Chen, J.W. Zhu, B. Wu, L. Ji, Y.L. Shen, Can. J.
Chem. Eng. 92 , 511 (2014)
17. M.M.L. Duarte, J. Lozar, G. Malmary, J. Molinier, J. Chem. Eng.
Data 34 , 43 (1989)
18. M.A. Eiteman, J.L. Gainer, Appl. Microbiol. Biotechnol. 30 , 614
(1989)
19. B.N. Taylor, C.E. Kuyatt, NIST Technical Note 1297 1994 Edition,
Guidelines for Evaluating and Expressing the Uncertainty of
NIST Measurement Results. Natl. Inst. Stand. Technol. 1 (1994)
20. J. Gmehling, U. Onken, Dechema, 1 (Frankfurt, Germany, p. 22)
(1977)
21. H. Renon, J.M. Prausnitz, AICHE J. 4 , 135 (1968)
22. D.S. Abrams, J.M. Prausnitz, AICHE J. 21 , 116 (1975)
23. J.H. Yim, H.J. Kim, J.J. Oh, J.S. Lim, K.Y. Choi, Fluid Phase
Equilib. 530 , 112897 (2021)
24. A. Bondi, J. Phys. Chem. 68 , 441 (1964)
25. H.C. Van Ness, S.M. Byer, R.E. Gibbs, AIChE J. 19 , 238 (1973)
26. P.L. Jackson, R.A. Wilsak, Fluid Phase Equilib. 103 , 155 (1995)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로