Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 3, 2023
Accepted November 22, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
All issues
Facile Synthesis of La-modifi ed CeO 2 with Microwave Method for CO 2 Adsorption
Abstract
CO 2 capture in air is an important issue nowadays. Cerium oxide has been reported to be a good adsorbent for CO 2 . However,
its adsorption capacity and adsorption strength are not high enough. La-modifi ed CeO 2 was used in this study. In this study:
a new adsorbent La-modifi ed CeO 2 solid solution were prepared from aqueous solution of cerium and lanthanum hydroxides
by microwave method. These hydroxides were prepared by precipitation of Ce(NO 3 ) 3 and La(NO 3 ) 3 solution. The materials
were characterized by powder X-ray diff raction, energy dispersive X-ray spectroscopic, scanning electron microscopy,
infrared spectroscopy, and nitrogen sorption. The results show that the increasing the lanthanum content leads to a reduction
in particle size, and increase in the number of oxygen vacancies in the crystalline structure and the specifi c BET surface areas
of the samples. The La-CeO 2 materials contained impurities of nitrate ions in their structure and exhibited high adsorption
properties for carbon dioxide at room temperature. The adsorption of carbon dioxide on the materials were in the form of
bidentate. La-modifi ed CeO 2 has large amount of CO 2 adsorption compared to the unmodifi ed one.
References
capture of CO 2 using adsorbents prepared from waste materials.
Proc. Saf. Environ. Protect. 139 , 1–25 (2020). https:// doi. org/ 10.
1016/j. psep. 2020. 03. 036
2. R. Ahmed, G. Liu, B. Yousaf, Q. Abbas, H. Ullah, M.U. Ali,
Recent advances in carbon-based renewable adsorbent for selective
carbon dioxide capture and separation—a review. J. Clean.
Prod. 242 , 118409 (2020). https:// doi. org/ 10. 1016/j. jclep ro. 2019.
118409
3. S.G. Subraveti, S. Roussanaly, R. Anantharaman, L. Riboldi, A.
Rajendran, How much can novel solid sorbents reduce the cost of
post-combustion CO 2 capture? A techno-economic investigation
on the cost limits of pressure–vacuum swing adsorption. Appl.
Energy 306 , 117955 (2022). https:// doi. org/ 10. 1016/j. apene rgy.
2021. 117955
4. C.-H. Yu, C.-H. Huang, C.-S. Tan, A Review of CO 2 capture by
absorption and adsorption, aerosol and air. Qual. Res. 12 , 745–769
(2012). https:// doi. org/ 10. 4209/ aaqr. 2012. 05. 0132
5. Y. Hu, W. Liu, Z. Zhou, Y. Yang, Preparation of Li 4 SiO 4 sorbents
for carbon dioxide capture via a spray-drying technique. Energy
Fuels 32 , 4521–4527 (2018). https:// doi. org/ 10. 1021/ acs. energ
yfuels. 7b030 51
6. J. Shi, Y. Li, Q. Zhang, X. Ma, L. Duan, X. Zhou, CO 2 capture
performance of a novel synthetic CaO/sepiolite sorbent at calcium
looping conditions. Appl. Energy 203 , 412–421 (2017). https://
doi. org/ 10. 1016/j. apene rgy. 2017. 06. 050
7. K. Liu, B. Zhao, Y. Wu, F. Li, J. Zhang, Bubbling synthesis and
high-temperature CO 2 adsorption performance of CaO-based
adsorbents from carbide slag. Fuel 269 , 117481 (2020). https://
doi. org/ 10. 1016/j. fuel. 2020. 117481
8. K. Yoshikawa, H. Sato, M. Kaneeda, J.N. Kondo, Synthesis and
analysis of CO 2 adsorbents based on cerium oxide. J. CO2 Utilization
8 , 34–38 (2014). https:// doi. org/ 10. 1016/j. jcou. 2014. 10. 001
9. Y. Shan, Y. Liu, Y. Li, W. Yang, A review on application of
cerium-based oxides in gaseous pollutant purifi cation. Sep. Purif.
Technol. 250 , 117181 (2020). https:// doi. org/ 10. 1016/j. seppur.
2020. 117181
10. A. Tschöpe, J.Y. Ying, Synthesis of nanostructured catalytic
materials using a modified magnetron sputtering technique.
Nanostruct. Mater. 4 , 617–623 (1994). https:// doi. org/ 10. 1016/
0965- 9773(94) 90071-X
11. G. Adachi, N. Imanaka, The binary rare earth oxides. Chem. Rev.
98 , 1479–1514 (1998). https:// doi. org/ 10. 1021/ cr940 055h
12. X. Yu, F. Li, X. Ye et al., Synthesis of cerium (IV) oxide ultrafi ne
particles by solid-state reactions. J. Am. Ceram. Soc. 83 , 964–966
(2000). https:// doi. org/ 10. 1111/j. 1151- 2916. 2000. tb013 06.x
13. F. Zhang, S.W. Chan, J.E. Spanier et al., Cerium oxide nanoparticles:
size selective formation and structure analysis. Appl. Phys.
Lett. 80 , 127–129 (2002). https:// doi. org/ 10. 1063/1. 14305 02
14. P.L. Chen, I.W. Chen, Reactive cerium (IV) oxide powders by
the homogeneous precipitation method. J. Am. Ceram. Soc. 76 ,
1577–1583 (1993). https:// doi. org/ 10. 1111/j. 1151- 2916. 1993.
tb039 42.x
15. T.C. Rojas, M. Ocana, Uniform nanoparticles of Pr (III)/Ceria
solid solutions prepared by homogeneous precipitation. Scripta
Mater. 46 , 655–660 (2002). https:// doi. org/ 10. 1016/ S1359-
6462(02) 00047-7
16. H. Li, G. Wang, F. Zhang, Y. Cai, Y. Wang, I. Djerdj, Surfactantassisted
synthesis of CeO 2 nanoparticles and their application
in wastewater treatmen. R. Soc. Chem. 2 , 12413–12423 (2012).
https:// doi. org/ 10. 1039/ c2ra2 1590j
17. L.S.R. Rocha, R.A.C. Amoresi, T.M. Duarte, N.L. Marana, J.R.
Sambrano, C.M. Aldao, A.Z. Simões, M.A. Ponce, E. Longo,
Experimental and theoretical interpretation of the order/disorder
clusters in CeO 2 :La. Appl. Surf. Sci. 510 , 145216 (2020). https://
doi. org/ 10. 1016/j. apsusc. 2019. 145216
18. S. Mishra, S. Soren, A.K. Debnath, D.K. Aswal, N. Das, P. Parhi,
Rapid microwave—hydrothermal synthesis of CeO 2 nanoparticles
for simultaneous adsorption/photodegradation of organic dyes
under visible light. Optik 169 , 125–136 (2018). https:// doi. org/ 10.
1016/j. ijleo. 2018. 05. 045
19. J.D.C. Carregosa, J.P.F. Grilo, G.S. Godoi, D.A. Macedo, R.M.
Nascimento, R.M.P.B. Oliveira, Microwave-assisted hydrothermal
synthesis of ceria (CeO 2 ): microstructure, sinterability and electrical
properties. Ceram. Internat. 46 , 23271–23275 (2020). https://
doi. org/ 10. 1016/j. ceram int. 2020. 06. 021
20. Y. Taoб, F.H. Gong, H. Wang, G.L. Tao, Microwave-assisted
preparation of cerium dioxide nanocubes. Mater. Chem. Phys.
2008112 (3), 973–976 (2008). https:// doi. org/ 10. 1016/j. match
emphys. 2008. 07. 018
21. H. Yang, C. Huang, A. Tang et al., Microwave-assisted synthesis
of ceria nanoparticles. Mat. Res. Bull. 40 , 1690–1695 (2005).
https:// doi. org/ 10. 1016/j. jmrt. 2021. 04. 036
22. V.P. Pakharukova, É.M. Moroz, D.A. Zyuzin, Construction of the
model radial distribution curves with regard to the features of
x-ray diff raction experiment. J. Struct. Chem. 51 , 274–280 (2010).
https:// doi. org/ 10. 1007/ s10947- 010- 0042-y
23. D.A. Zyuzin, E.M. Moroz, A.S. Ivanova, A.N. Shmakov, G.N.
Kustova, Local structure of amorphous and highly dispersed zirconium
hydroxides and oxides. Kinet. Catal. 45 , 739–742 (2004).
https:// doi. org/ 10. 1023/B: KICA. 00000 44988. 66511. 2d
24. The thermal decomposition of lanthanum hydroxide [Electronic
resource], Chemiday.com. 2015. https:// chemi day. com/ react ion
25. D.J. Kim, Lattice parameters, ionic conductivities, and solubility
limits in fl uorite-structure MO 2 oxide [M = Hf 4+ , Zr 4+ , Ce 4+ ,
Th 4+ , U 4+ ] solid solutions. J. Am. Ceram. Soc. 72 , 1415–1421
(1989). https:// doi. org/ 10. 1111/j. 1151- 2916. 1989. tb076 63.x
26. S. Zec, S. Boskovic, B. Kalurerovic et al., Chemical reduction of
nanocrystalline CeO 2 . Ceram. Int. 35 , 195–198 (2009). https://
doi. org/ 10. 1016/j. ceram int. 2007. 10. 031
27. D.N. Durgasri, T. Vinodkumar, P. Sudarsanam, B.M. Reddy,
Nanosized CeO 2 –Gd 2 O 3 mixed oxides: study of structural characterization
and catalytic CO oxidation activity. Catal. Lett. 144 (6),
971–979 (2014). https:// doi. org/ 10. 1007/ s10562- 014- 1223-7
28. Z.D. Dohčević-Mitrović, M.J. Šćepanović, M.U. Grujić-Brojčin,
Z.V. Popović, S.B. Bošković, B.M. Matović, M.V. Zinkevich, F.
Aldinger, The size and strain eff ects on the Raman spectra of
Ce 1 − x Nd x O 2 − δ (0 ≤ x ≤ 0.25) nanopowders. Solid State Commun.
137 (7), 387–390 (2006). https:// doi. org/ 10. 1016/j. ssc. 2005. 12. 006
29. F. Meng, Z. Fan, C. Zhang, Y. Hu, T. Guan, A. Li, Morphologycontrolled
synthesis of CeO 2 microstructures and their room temperature
ferromagnetism. J. Mater. Sci. Technol. 33 (5), 444–451
(2017). https:// doi. org/ 10. 1016/j. jmst. 2016. 06. 018
30. NIST Chemistry WebBook https:// webbo ok. nist. gov/ cgi/ cbook.
cgi? Formu la= NO2& NoIon= on& Units= SI& cMS= on# Mass- Spec
31. S. Smart, S. Liu, J.M. Serra, J.C. Diniz da Costa, A. Iulianelli,
A. Basile, Porous ceramic membranes for membrane reactors.
Handbook Membr. React. 1 , 298–336 (2013). https:// doi. org/ 10.
1533/ 97808 57097 330.2. 298
32. J. Choma, M. Kloske, M. Jaroniec, An improved methodology
for adsorption characterization of unmodifi ed and modifi ed silica
gels. J. Colloid Interface Sci. 266 , 168–174 (2003). https:// doi.
org/ 10. 1016/ S0021- 9797(03) 00573-3
33. C. Weidenthaler, Pitfalls in the characterization of nanoporous
and nanosized materials. Nanoscale 3 , 792–810 (2011). https://
doi. org/ 10. 1039/ c0nr0 0561d
34. C. Binet, M. Daturi, J.C. Lavalley, IR study of polycrystalline
ceria properties in oxidised and reduced states. Catal. Today
50 (2), 207–225 (1999). https:// doi. org/ 10. 1016/ S0920- 5861(98)
00504-5
35. L. Bin, L. Congming, Z.H. Guoqiang, Y. Xuesi, Oxygen vacancy
promoting dimethyl carbonate synthesis from CO 2 and methanol
over Zr-doped CeO 2 nanorods. ACS Catal. 8 , 10446–10456
(2018). https:// doi. org/ 10. 1021/ acsca tal. 8b004 15