Overall
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 13, 2023
Accepted October 6, 2023
- Acknowledgements
- Metal–organic frameworks · ZIF-67 · Nanoporous carbon · Electric double layer capacitors
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
Enhanced Performance of Electrical Double-Layer Capacitor by Controlling the Specifi c Surface Area and Pore Structure of ZIF-67
Abstract
Electrical double-layer capacitance can be enhanced by developing carbon materials with elevated specifi c surface area,
porosity, and electrical conductivity. In this study, we demonstrate a facile approach for synthesizing carbon materials
with a meticulously controlled pore structure of ZIF-67 by a precise manipulation of the precursor solution quantities. The
concentration of the precursor solution aff ected the crystal size of ZIF-67 due to the diff erent nucleation rates. After the
carbonization of the crystals, smaller cobalt nanoparticles were formed within the carbon materials derived from the larger
ZIF-67 crystal. The removal of the nanoparticles by acid treatment induced the formation of porous carbon, resulting in
the enhanced performance of the electrical double-layer capacitors. The nanoporous carbon derived from the largest-sized
ZIF-67 template exhibited a remarkable specifi c capacitance of 157 F/g at a current density of 1 A/g, retaining an impressive
85% of this value after 30,000 charging/discharging cycles at 16 A/g.
References
(2023)
2. L. Deng, T. Wei, J. Liu, L. Zhan, W. Chen, J. Cao, Crystals 12 ,
1279 (2022)
3. S.H. Kwon, E. Lee, B.-S. Kim, S.-G. Kim, B.-J. Lee, M.-S. Kim,
J.C. Jung, Korean J. Chem. Eng. 14 , 603 (2014)
4. E. Lam, J.H.T. Luong, ACS Catal. 4 , 3393–3410 (2014)
5. A.A. Stepacheva, M.E. Markova, Y.V. Lugovoy, YYu. Kosivtsov,
V.G. Matveeva, M.G. Sulman, Catalysts 13 , 655 (2023)
6. D. Zhang, G. Wei, Y. Wang, J. Wang, P. Ning, Q. Zhang, M.
Wang, T. Zhang, K. Long, Korean J. Chem. Eng. 35 , 1979 (2018)
7. M.M. Sabzehmeidani, S. Mahnaee, M. Ghaedi, H. Heidari, V.A.L.
Roy, Mater. Adv. 2 , 598–627 (2021)
8. S. Khalili, M. Jahanshahi, Korean J. Chem. Eng. 38 (4), 862–871
(2021)
9. S.-H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka, I.
Mochida, Carbon 42 , 1723–1729 (2004)
10. C.H. Kwak, C. Lim, S. Kim, Y.-S. Lee, J. Ind. Eng. Chem. 116 ,
21–31 (2022)
11. K.D. Stephane, M. Gupta, A. Kumar, V. Sharma, S. Pandit, P.
Bocchetta, Y. Kumar, J. Compos. Sci. 5 , 66 (2021)
12. D. Gandla, X. Wu, F. Zhang, C. Wu, D.Q. Tan, ACS Omega 6 ,
7615–7625 (2021)
13. F. Cheng, X. Yang, S. Zhang, W. Lu, J. Power. Sources 450 ,
227678 (2020)
14. L. Yang, L. Zhang, X. Jiao, Y. Qiu, W. Xu, RSC Adv. 11 , 4042–
4052 (2021)
15. S. Choi, C. Kim, J.M. Suh, H.W. Jang, Carbon Energy 1 , 85–108
(2019)
16. S.B. Patil, B. Kishore, G. Nagaraju, J. Dupont, N. J. Chem. 42 ,
18569–18577 (2018)
17. S.Y. Hwang, C.-H. Lee, H.R. Lee, S.-Y. Son, S. Lee, H.-I. Joh,
Chem. Eng. Sci. 231 , 116301 (2021)
18. Z. Di, H. Shen, Y. Guo, X. Guo, B. Kang, M. Guo, Y. Wei, J. Jia,
R. Zhang, Chem. Phys. Impact 5 , 100103 (2022)
19. S. Mullner, T. Held, T. Tichter, P. Rank, D. Leykam, W. Jiang, T.
Lunkenbein, T. Gerdes, C. Roth, J. Electrochem. Soc. 170 , 070523
(2023)
20. Y.-F. Li, Y.-Z. Liu, W.-K. Zhang, C.-Y. Guo, C.-M. Chen, Mater.
Lett. 157 , 273–276 (2015)
21. J. Yin, W. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Small
Methods 4 , 1900853 (2020)
22. S.Y. Lee, J.Y. Lee, H.-W. Jang, U.H. Son, S. Lee, H.-I. Joh, J. Ind.
Eng. Chem. 117 , 434–441 (2023)
23. V. Pirouzfar, N. Roustaie, C.-H. Su, Korean J. Chem. Eng. 40 (9),
2138–2148 (2023)
24. H.-W. Jang, S.Y. Lee, J.Y. Lee, H.-I. Joh, Carbon Lett. 33 , 215–
223 (2023)
25. C. Duan, Y. Yu, H. Hu, Green Energy Environ. 7 , 3–15 (2022)
26. N.L. Torad, R.R. Salunkhe, Y. Li, H. Hamoudi, M. Imura, Y.
Sakka, C.-C. Hu, Y. Yamauchi, Chem. Eur. J. 20 , 7895–7900
(2014)
27. J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa,
Y. Yamauchi, J. Am. Chem. Soc. 137 , 1572–1580 (2015)
28. K.A.S. Usman, J.W. Maina, S. Seyedin, M.T. Conato, L.M.
Payawan Jr., L.F. Dumee, J.M. Razal, NPG Asia 12 , 58 (2020)
29. J.J. Beh, J.K. Lim, E.P. Ng, B.S. Ooi, Mater. Chem. Phys. 216 ,
393–401 (2018)
30. S.J. Goldie, S. Jiang, K.S. Coleman, Mater. Adv. 2 , 3353 (2021)
31. H.-W. Jang, G.-S. Kang, J.Y. Lee, S.Y. Lee, G. Lee, S.J. Yoo, S.
Lee, H.-I. Joh, Chem. Eng. J. 474 , 145464 (2023)
32. Y. Liu, H. Yu, C. Shi, Z. Xiang, J. Mater. Chem. A 9 , 19625–
19630 (2021)