ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Overall

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 13, 2023
Accepted October 6, 2023
Acknowledgements
Metal–organic frameworks · ZIF-67 · Nanoporous carbon · Electric double layer capacitors
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

Enhanced Performance of Electrical Double-Layer Capacitor by Controlling the Specifi c Surface Area and Pore Structure of ZIF-67

Department of Energy Engineering , Konkuk University
Korean Journal of Chemical Engineering, May 2024, 41(5), 1391-1398(8), https://doi.org/10.1007/s11814-024-00110-8

Abstract

Electrical double-layer capacitance can be enhanced by developing carbon materials with elevated specifi c surface area,

porosity, and electrical conductivity. In this study, we demonstrate a facile approach for synthesizing carbon materials

with a meticulously controlled pore structure of ZIF-67 by a precise manipulation of the precursor solution quantities. The

concentration of the precursor solution aff ected the crystal size of ZIF-67 due to the diff erent nucleation rates. After the

carbonization of the crystals, smaller cobalt nanoparticles were formed within the carbon materials derived from the larger

ZIF-67 crystal. The removal of the nanoparticles by acid treatment induced the formation of porous carbon, resulting in

the enhanced performance of the electrical double-layer capacitors. The nanoporous carbon derived from the largest-sized

ZIF-67 template exhibited a remarkable specifi c capacitance of 157 F/g at a current density of 1 A/g, retaining an impressive

85% of this value after 30,000 charging/discharging cycles at 16 A/g.

References

1. S. Yuan, Q. Lai, X. Duan, Q. Wang, J. Energy Storage 61 , 106716
(2023)
2. L. Deng, T. Wei, J. Liu, L. Zhan, W. Chen, J. Cao, Crystals 12 ,
1279 (2022)
3. S.H. Kwon, E. Lee, B.-S. Kim, S.-G. Kim, B.-J. Lee, M.-S. Kim,
J.C. Jung, Korean J. Chem. Eng. 14 , 603 (2014)
4. E. Lam, J.H.T. Luong, ACS Catal. 4 , 3393–3410 (2014)
5. A.A. Stepacheva, M.E. Markova, Y.V. Lugovoy, YYu. Kosivtsov,
V.G. Matveeva, M.G. Sulman, Catalysts 13 , 655 (2023)
6. D. Zhang, G. Wei, Y. Wang, J. Wang, P. Ning, Q. Zhang, M.
Wang, T. Zhang, K. Long, Korean J. Chem. Eng. 35 , 1979 (2018)
7. M.M. Sabzehmeidani, S. Mahnaee, M. Ghaedi, H. Heidari, V.A.L.
Roy, Mater. Adv. 2 , 598–627 (2021)
8. S. Khalili, M. Jahanshahi, Korean J. Chem. Eng. 38 (4), 862–871
(2021)
9. S.-H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka, I.
Mochida, Carbon 42 , 1723–1729 (2004)
10. C.H. Kwak, C. Lim, S. Kim, Y.-S. Lee, J. Ind. Eng. Chem. 116 ,
21–31 (2022)
11. K.D. Stephane, M. Gupta, A. Kumar, V. Sharma, S. Pandit, P.
Bocchetta, Y. Kumar, J. Compos. Sci. 5 , 66 (2021)
12. D. Gandla, X. Wu, F. Zhang, C. Wu, D.Q. Tan, ACS Omega 6 ,
7615–7625 (2021)
13. F. Cheng, X. Yang, S. Zhang, W. Lu, J. Power. Sources 450 ,
227678 (2020)
14. L. Yang, L. Zhang, X. Jiao, Y. Qiu, W. Xu, RSC Adv. 11 , 4042–
4052 (2021)
15. S. Choi, C. Kim, J.M. Suh, H.W. Jang, Carbon Energy 1 , 85–108
(2019)
16. S.B. Patil, B. Kishore, G. Nagaraju, J. Dupont, N. J. Chem. 42 ,
18569–18577 (2018)
17. S.Y. Hwang, C.-H. Lee, H.R. Lee, S.-Y. Son, S. Lee, H.-I. Joh,
Chem. Eng. Sci. 231 , 116301 (2021)
18. Z. Di, H. Shen, Y. Guo, X. Guo, B. Kang, M. Guo, Y. Wei, J. Jia,
R. Zhang, Chem. Phys. Impact 5 , 100103 (2022)
19. S. Mullner, T. Held, T. Tichter, P. Rank, D. Leykam, W. Jiang, T.
Lunkenbein, T. Gerdes, C. Roth, J. Electrochem. Soc. 170 , 070523
(2023)
20. Y.-F. Li, Y.-Z. Liu, W.-K. Zhang, C.-Y. Guo, C.-M. Chen, Mater.
Lett. 157 , 273–276 (2015)
21. J. Yin, W. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Small
Methods 4 , 1900853 (2020)
22. S.Y. Lee, J.Y. Lee, H.-W. Jang, U.H. Son, S. Lee, H.-I. Joh, J. Ind.
Eng. Chem. 117 , 434–441 (2023)
23. V. Pirouzfar, N. Roustaie, C.-H. Su, Korean J. Chem. Eng. 40 (9),
2138–2148 (2023)
24. H.-W. Jang, S.Y. Lee, J.Y. Lee, H.-I. Joh, Carbon Lett. 33 , 215–
223 (2023)
25. C. Duan, Y. Yu, H. Hu, Green Energy Environ. 7 , 3–15 (2022)
26. N.L. Torad, R.R. Salunkhe, Y. Li, H. Hamoudi, M. Imura, Y.
Sakka, C.-C. Hu, Y. Yamauchi, Chem. Eur. J. 20 , 7895–7900
(2014)
27. J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa,
Y. Yamauchi, J. Am. Chem. Soc. 137 , 1572–1580 (2015)
28. K.A.S. Usman, J.W. Maina, S. Seyedin, M.T. Conato, L.M.
Payawan Jr., L.F. Dumee, J.M. Razal, NPG Asia 12 , 58 (2020)
29. J.J. Beh, J.K. Lim, E.P. Ng, B.S. Ooi, Mater. Chem. Phys. 216 ,
393–401 (2018)
30. S.J. Goldie, S. Jiang, K.S. Coleman, Mater. Adv. 2 , 3353 (2021)
31. H.-W. Jang, G.-S. Kang, J.Y. Lee, S.Y. Lee, G. Lee, S.J. Yoo, S.
Lee, H.-I. Joh, Chem. Eng. J. 474 , 145464 (2023)
32. Y. Liu, H. Yu, C. Shi, Z. Xiang, J. Mater. Chem. A 9 , 19625–
19630 (2021)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로