Overall
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 10, 2023
Accepted November 8, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
Modeling CO 2 Loading Capacity of Diethanolamine (DEA) Aqueous Solutions Using Advanced Deep Learning and Machine Learning Algorithms: Application to Carbon Capture
Abstract
Several carbon capture techniques have been developed in response to the notable rise of atmospheric carbon dioxide ( CO2 )
levels. The utilization of diethanolamine (DEA) as an absorption method is prevalent in various industries due to its high
reactivity and cost-effi ciency. Hence, comprehending the equilibrium solubility of CO2 in DEA solutions is an essential step
in developing and optimizing absorption procedures. In order to predict the CO2 loading capacity in the DEA solutions,
four advanced deep learning and machine learning models were developed: recurrent neural networks (RNN), deep neural
networks (DNN), random forest (RF), and adaBoost-support vector regression (AdaBoost-SVR). The models predict the
capacity of CO2 loading as a function of temperature, CO2 partial pressure, and the concentration of DEA in the solution.
Intelligent models were developed employing an extensive database which includes new experimental data points published
within recent years, which were not considered in the previous studies. The RNN model was found to outperform other
models based on graphical and statistical assessments, as evidenced by its lower root mean square error ( RMSE = 0.285 )
and standard deviation ( SD = 0.032 ), and higher determination coeffi cient ( R2
= 0.992 ). While the RNN model resulted in
the highest accuracy in predicting CO2 absorption, the DNN, RF, and AdaBoost-SVR models also demonstrated satisfactory
accuracy in predicting CO2 solubility, placed in the following ranking. A sensitivity analysis was performed on the four
developed models, revealing that the CO2 partial pressure has the strongest eff ect on the CO2 loading capacity. Furthermore,
a trend analysis was performed on the RNN model, demonstrating that the developed model has a high degree of accuracy
in following physical trends. The binary interaction analysis was conducted with two varying parameters and one constant
parameter in the RNN model through 3-D image plots, which illustrated the simultaneous eff ect of two independent parameters
on CO2 loading. Finally, outlier detection was conducted by employing the Leverage method to fi nd outlier data points
in the data bank, demonstrating the applicability domain of intelligent models.
References
versus greenhouse gases emission. Int. J. Eng. 6 , 781–788
(2013)
2. H. Yang et al., Progress in carbon dioxide separation and capture:
A review,". J. Environ. Sci. 20 (1), 14–27 (2008). https://
doi. org/ 10. 1016/ S1001- 0742(08) 60002-9
3. D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview
of current status of carbon dioxide capture and storage
technologies. Renew. Sustain. Energy Rev. 39 , 426–443
(2014). https:// doi. org/ 10. 1016/j. rser. 2014. 07. 093
4. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava,
Advances in CO2 capture technology—the US department
of energy’s carbon sequestration program. Int. J. Greenhouse
Gas Control 2 (1), 9–20 (2008). https:// doi. org/ 10. 1016/
S1750- 5836(07) 00094-1
5. A.S. Bhown, B.C. Freeman, Analysis and status of post-combustion
carbon dioxide capture technologies. Environ. Sci.
Technol. 45 (2), 8624–8632 (2011). https:// doi. org/ 10. 1021/
es104 291d
6. M.R. Abu-Zahra et al., Carbon dioxide post-combustion capture:
solvent technologies overview, status and future directions.
Mater. Process. Energy: Commun. Curr. Res. Technol. Dev. 1 ,
923–934 (2013)
7. A.B. Rao, E.S. Rubin, A technical, economic, and environmental
assessment of amine-based CO2 capture technology for power
plant greenhouse gas control. Environ. Sci. Technol. 36 (20),
4467–4475 (2002). https:// doi. org/ 10. 1021/ es015 8861
8. R.B. Sonawane, S.R. Sonawane, N.K. Rasal, S.V. Jagtap, Chemoselective
O-formyl and O-acyl protection of alkanolamines,
phenoxyethanols and alcohols catalyzed by nickel (ii) and copper
(ii)-catalysts. Green Chem. 22 (10), 3186–3195 (2020)
9. S.G. de Ávila, M.A. Logli, J.R. Matos, Kinetic study of the thermal
decomposition of monoethanolamine (MEA), diethanolamine
(DEA), triethanolamine (TEA) and methyldiethanolamine
(MDEA). Int. J. Greenhouse Gas Control 42 , 666–671 (2015).
https:// doi. org/ 10. 1016/j. ijggc. 2015. 10. 001
10. A. Mukhtar et al., CO2 capturing, thermo-kinetic principles, synthesis
and amine functionalization of covalent organic polymers
for CO2 separation from natural gas: A review,". J. Nat. Gas Sci.
Eng. 77 , 103203 (2020). https:// doi. org/ 10. 1016/j. jngse. 2020.
103203
11. Rushdi S, Thamer, E. (2020). Investigation of overall mass
transfer coeffi cient of CO2 absorption in to aqueous blended
Monoethanolamine (MEA), Diethanolamine (DEA) and Triethanolamine
(TEA) measured in Bubble column Reactor solution.
In: IOP Conference Series: Materials Science and Engineering
(Vol. 870, No. 1, p. 012056). IOP Publishing.
12. A. Adeosun, N. El Hadri, E. Goetheer, M. Abu-Zahra, Absorption
of CO2 by amine blends solution: an experimental evaluation.
Int. J. Eng. Sci. 3 (9), 12–23 (2013)
13. H. Suleman, A.S. Maulud, Z. Man, Experimental measurement
and thermodynamic modeling of the solubility of carbon dioxide
in aqueous alkanolamine solutions in the high gas loading region.
Int. J. Thermophys. 37 (9), 94 (2016). https:// doi. org/ 10. 1007/
s10765- 016- 2103-8
14. A. Hemmati, H. Rashidi, K. Behradfar, A. Kazemi, A comparative
study of diff erent mass transfer and liquid hold-up correlations
in modeling CO2 absorption with MEA. J. Nat. Gas Sci.
Eng. 62 , 92–100 (2019). https:// doi. org/ 10. 1016/j. jngse. 2018.
12. 004
15. S. Liu, H. Ling, H. Gao, P. Tontiwachwuthikul, Z. Liang, H.
Zhang, Kinetics and new Brønsted correlations study of CO2
absorption into primary and secondary alkanolamine with and
without steric-hindrance. Separat. Purif. Technol. 233 , 115998
(2020). https:// doi. org/ 10. 1016/j. seppur. 2019. 115998
16. R. Tellagorla, S.C. Balchandani, S. Gumma, B. Mandal, Equilibrium
CO2 solubility of novel tris(2-aminoethyl) amine as a
promoter to N-methyldiethanolamine and 2-amino-2-methyl-
1-propanol,". Separat. Purif. Technol. 279 , 119705 (2021).
https:// doi. org/ 10. 1016/j. seppur. 2021. 119705
17. R. N. Maddox, Gas and liquid sweetening, by R. N. Maddox
(Campbell petroleum series, no. Accessed from https:// nla. gov.
au/ nla. cat- vn189 4702 ). Norman, Okla: M. Campbell, 1974.
18. R.V. Martis, R. Singh, K. Ankita, A.K. Pathak, C. Guria, Solubility
of carbon dioxide using aqueous NPK 10: 26: 26 complex
fertilizer culture medium and Spirulina platensis suspension.
J. Environ. Chem. Eng. 1 (4), 1245–1251 (2013). https://
doi. org/ 10. 1021/ je800 774c
19. K. Başaran, B.U. Topçubaşı, T. Davran-Candan, Theoretical
investigation of CO2 adsorption mechanism over amine-functionalized
mesoporous silica. J. CO2 Util. 47 , 101492 (2021)
20. S.C. Tiwari, K.K. Pant, S. Upadhyayula, Effi cient CO2 absorption
in aqueous dual functionalized cyclic ionic liquids. J. CO2
Util. 45 , 101416 (2021). https:// doi. org/ 10. 1016/j. jcou. 2020.
101416
21. S. Chakravartula Srivatsa, S. Bhattacharya, Amine-based CO2
capture sorbents: A potential CO2 hydrogenation catalyst. J.
CO2 Util. 26 , 397–407 (2018). https:// doi. org/ 10. 1016/j. jcou.
2018. 05. 028
22. P. Galindo, A. Schäff er, K. Brechtel, S. Unterberger, G. Scheffknecht,
Experimental research on the performance of CO2-
loaded solutions of MEA and DEA at regeneration conditions.
Fuel 101 , 2–8 (2012). https:// doi. org/ 10. 1016/j. fuel. 2011. 02.
005
23. R.R. Bottoms, Organic bases for gas purifi cation. Indust. Eng.
Chem. 23 (5), 501–504 (1931). https:// doi. org/ 10. 1021/ ie502
57a007
24. J. W. Mason and B. F. Dodge, (1936) Equilibrium absorption of
carbon dioxide by solutions of the ethanolamines, Verlag nicht
ermittelbar
25. J.I. Lee, F.D. Otto, A.E. Mather, Solubility of carbon dioxide in
aqueous diethanolamine solutions at high pressures. J. Chem.
Eng. Data 17 (4), 465–468 (1972). https:// doi. org/ 10. 1021/ je600
55a015
26. J.D. Lawson, A.W. Garst, Gas sweetening data: equilibrium
solubility of hydrogen sulfi de and carbon dioxide in aqueous
monoethanolamine and aqueous diethanolamine solutions. J.
Chem. Eng. Data 21 (1), 20–30 (1976). https:// doi. org/ 10. 1021/
je600 68a010
27. D. Lal, F.D. Otto, A.E. Mather, The solubility of H2S and CO2
in a diethanolamine solution at low partial pressures. Canadian
J. Chem. Eng. 63 (4), 681–685 (1985). https:// doi. org/ 10. 1002/
cjce. 54506 30423
28. H. Pashaei, M.N. Zarandi, A. Ghaemi, Experimental study and
modeling of CO2 absorption into diethanolamine solutions using
stirrer bubble column. Chem. Eng. Res. Design 121 , 32–43
(2017). https:// doi. org/ 10. 1016/j. cherd. 2017. 03. 001
29. W. Fan, Y. Liu, K. Wang, Detailed experimental study on the
performance of Monoethanolamine, Diethanolamine, and
Diethylenetriamine at absorption/regeneration conditions. J.
Clean. Product. 125 , 296–308 (2016). https:// doi. org/ 10. 1016/j.
jclep ro. 2016. 03. 144
30. A. Aroonwilas and P. Tontiwachwuthikul, (1997) High-effi -
ciency structured packing for CO2 separation using 2-amino-
2-methyl-1-propanol (AMP), Separat. Purif. Technol., 12(1):
67–79, https:// doi. org/ 10. 1016/ S1383- 5866(97) 00037-3 .
31. F. Murrieta-Guevara, E. Rebolledo-Libreros, A. Trejo, Gas
solubilities of carbon dioxide and hydrogen sulfi de in sulfolane
and its mixtures with alkanolamines. Fluid Phase Equilib. 53 ,
1–6 (1982). https:// doi. org/ 10. 1016/ 0378- 3812(89) 80066-4
32. F. Murrieta-Guevara, E. Rebolledo-Libreros, A. Trejo, Gas
solubility of hydrogen sulfi de and carbon dioxide in mixtures
of sulfolane with diethanolamine at diff erent temperatures.
Fluid Phase Equilib. 95 , 163–174 (1994). https:// doi. org/ 10.
1016/ 0378- 3812(94) 80068-5
33. M.H. Jenab, M. Vahidi, M. Mehrabi, Solubility of carbon dioxide
in aqueous mixtures of DIPA + MDEA and DIPA + PZ
solutions. J. Chin. Chem. Soc. 53 (2), 283–286 (2006). https://
doi. org/ 10. 1002/ jccs. 20060 0034
34. M.K. Aroua, M.Z. Haji-Sulaiman, K. Ramasamy, Modelling
of carbon dioxide absorption in aqueous solutions of AMP
and MDEA and their blends using Aspenplus. Separat. Purif.
Technol. 29 (2), 153–162 (2002). https:// doi. org/ 10. 1016/ S1383-
5866(02) 00071-0
35. A. Hafi zi, M. Rajabzadeh, R. Khalifeh, Enhanced CO2 absorption
and desorption effi ciency using DETA functionalized nanomagnetite/
water nano-fl uid. J. Environ. Chem. Eng. 8 (4), 103845
(2020). https:// doi. org/ 10. 1016/j. jece. 2020. 103845
36. L. Li, C. Zhang, Y. Chen, X. Liu, The use of nanoparticles
for high-effi ciency CO2 capture by methanol. J. CO2 Util. 66 ,
102299 (2022). https:// doi. org/ 10. 1016/j. jcou. 2022. 102299
37. M.K. Aroua, R. Mohd Salleh, Solubility of CO2 in aqueous piperazine
and its modeling using the Kent-Eisenberg approach.
Chem. Eng. Technol. 27 (1), 65–70 (2004). https:// doi. org/ 10.
1002/ ceat. 20040 1852
38. S.J. Hwang, M. Lee, H. Kim, K.S. Lee, Cyclic CO2 absorption
capacity of aqueous single and blended amine solvents. J.
Indust. Eng. Chem. 65 , 95–103 (2018). https:// doi. org/ 10. 1016/j.
jiec. 2018. 04. 017
39. Z.-Y. Yang, A.N. Soriano, A.R. Caparanga, M.-H. Li, Equilibrium
solubility of carbon dioxide in (2-amino-2-methyl-1-
propanol+piperazine+water). J. Chem. Thermodyn. 42 (5),
659–665 (2009). https:// doi. org/ 10. 1016/j. jct. 2009. 12. 006
40. D. Tong, J.P.M. Trusler, G.C. Maitland, J. Gibbins, P.S. Fennell,
Solubility of carbon dioxide in aqueous solution of monoethanolamine
or 2-amino-2-methyl-1-propanol: Experimental measurements
and modelling. Int. J. Greenhouse Gas Control 6 , 37–47
(2012). https:// doi. org/ 10. 1016/j. ijggc. 2011. 11. 005
41. M. Afkhamipour, M. Mofarahi, A. Rezaei, R. Mahmoodi, C.-H.
Lee, Experimental and theoretical investigation of equilibrium
absorption performance of CO2 using a mixed 1-dimethylamino-
2-propanol (1DMA2P) and monoethanolamine (MEA) solution.
Fuel 256 , 115877 (2019). https:// doi. org/ 10. 1016/j. fuel. 2019.
115877
42. R.D. Deshmukh, A.E. Mather, A mathematical model for equilibrium
solubility of hydrogen sulfi de and carbon dioxide in aqueous
alkanolamine solutions. Chem. Eng. Sci. 36 (2), 355–362
(1981). https:// doi. org/ 10. 1016/ 0009- 2509(81) 85015-4
43. R.H. Weiland, T. Chakravarty, A.E. Mather, Solubility of carbon
dioxide and hydrogen sulfi de in aqueous alkanolamines. Indust.
Eng. Chem. Res. 32 (7), 1419–1430 (2002). https:// doi. org/ 10.
1021/ ie000 19a016
44. T.T. Teng, A.E. Mather, Solubility of H2S, CO2 and their mixtures
in an AMP solution. Canadian J. Chem. Eng. 67 (5), 846–
850 (1989). https:// doi. org/ 10. 1002/ cjce. 54506 70517
45. T.T. Teng, A.E. Mather, Solubility of acid gases in chemical and
mixed solvents. Gas Sep. Purif. 51 (1), 29–34 (1991). https:// doi.
org/ 10. 1016/ 0950- 4214(91) 80046-8
46. R. Mahmoodi, M. Mofarahi, A.A. Izadpanah, M. Afkhamipour,
A. Hajizadeh, Experimental and theoretical investigation of
equilibrium absorption performance: Eff ect of alkyl amines as
promoters on the CO2 loading of 2-amino-2-methyl-1-propanol
at 313 K. Energy Fuels 33 (9), 8985–8997 (2019). https:// doi. org/
10. 1021/ acs. energ yfuels. 9b019 57
47. P. Pakzad, M. Mofarahi, A.A. Izadpanah, M. Afkhamipour,
Experimental data, thermodynamic and neural network modeling
of CO2 absorption capacity for 2-amino-2-methyl-1-propanol
(AMP) + Methanol (MeOH) + H2O system. J. Nat. Gas Sci.
Eng. 73 , 103060 (2020). https:// doi. org/ 10. 1016/j. jngse. 2019.
103060
48. D.M. Austgen, G.T. Rochelle, C.C. Chen, Model of vapor-liquid
equilibria for aqueous acid gas-alkanolamine systems. 2. Representation
of hydrogen sulfi de and carbon dioxide solubility in
aqueous MDEA and carbon dioxide solubility in aqueous mixtures
of MDEA with MEA or DEA. Indust. Eng. Chem. Res.
30 (3), 543–555 (2002). https:// doi. org/ 10. 1021/ ie000 51a016
49. C.-C. Chen, H.I. Britt, J.F. Boston, L.B. Evans, Local composition
model for excess Gibbs energy of electrolyte systems. Part
I: Single solvent, single completely dissociated electrolyte systems.
AIChE J. 28 (4), 588–596 (1982). https:// doi. org/ 10. 1002/
aic. 69028 0410
50. Y. Zhang, H. Que, C.-C. Chen, Thermodynamic modeling for
CO2 absorption in aqueous MEA solution with electrolyte NRTL
model. Fluid Phase Equilib. 311 , 67–75 (2011). https:// doi. org/
10. 1016/j. fl uid. 2011. 08. 025
51. C.-C. Chen, L.B. Evans, A local composition model for the
excess Gibbs energy of aqueous electrolyte systems. AIChE J.
32 (3), 444–454 (1986). https:// doi. org/ 10. 1002/ aic. 69032 0311
52. D.M. Austgen, G.T. Rochelle, X. Peng, C.C. Chen, Model of
vapor-liquid equilibria for aqueous acid gas-alkanolamine systems
using the electrolyte-NRTL equation. Indust. Eng. Chem.
Res. 28 (7), 1060–1073 (2002). https:// doi. org/ 10. 1021/ ie000
91a028
53. U.E. Aronu et al., Solubility of CO2 in 15, 30, 45 and 60 mass%
MEA from 40 to 120°C and model representation using the
extended UNIQUAC framework. Chem. Eng. Sci. 66 (24), 6393–
6406 (2011). https:// doi. org/ 10. 1016/j. ces. 2011. 08. 042
54. H. Mehdizadeh, M. Gupta, E.F. Da Silva, H.F. Svendsen, Representation
of Piperazine-CO2-H2O system using extended-
UNIQUAC and computational chemistry. Energy Procedia 37 ,
1871–1880 (2013). https:// doi. org/ 10. 1016/j. egypro. 2013. 06. 067
55. A. Haghtalab, M. Dehghani Tafti, Electrolyte UNIQUAC−NRF
Model to Study the solubility of acid gases in Alkanolamines.
Indust. Eng. Chem. Res. 46 (18), 6053–6060 (2007). https:// doi.
org/ 10. 1021/ ie070 259r
56. S.-M. Kim et al. , "CO2 absorption mechanism in aqueous ternary
solutions of alkanolamines: Experimental and thermodynamic
modeling approaches," Chemical Engineering Journal, vol. 428,
p. 132044, 2022/01/15/ 2022, doi: https:// doi. org/ 10. 1016/j. cej.
2021. 132044 .
57. H. Suleman, A.S. Maulud, Z. Man, Review and selection criteria
of classical thermodynamic models for acid gas absorption in
aqueous alkanolamines. Rev. Chem. Eng. 31 (6), 599–639 (2015)
58. R. Zhang et al., Thermodynamic studies for improving the prediction
of CO2 equilibrium solubility in aqueous 2-dimethylamino-
2-methyl-1-propanol. Sep. Purif. Technol. 295 , 121292
(2022). https:// doi. org/ 10. 1016/j. seppur. 2022. 121292
59. Z. Bai et al. , (2016) Modelling of a post-combustion CO2 capture
process using bootstrap aggregated extreme learning machines.
In: Computer Aided Chemical Engineering , vol. 38, Z. Kravanja
and M. Bogataj Eds.: Elsevier, 2007–2012.
60. S. G. Subraveti, (2021) Machine learning-based design and
techno-economic assessments of adsorption processes for CO2
capture," 2021.
61. Y. Yan et al., Harnessing the power of machine learning for carbon
capture, utilisation, and storage (CCUS)–a state-of-the-art
review. Energy Environ. Sci. 14 (12), 6122–6157 (2021)
62. H. Quan, S. Dong, D. Zhao, H. Li, J. Geng, H. Liu, Generic AI
models for mass transfer coeffi cient prediction in amine-based
CO2 absorber, Part II: RBFNN and RF model. AIChE J. 69 (1),
e17904 (2023). https:// doi. org/ 10. 1002/ aic. 17904
63. M. Hamzehie, S.H. Najibi, Experimental and theoretical study
of carbon dioxide solubility in aqueous solution of potassium
glycinate blended with piperazine as new absorbents. Int. J. CO2
Util. 16 , 64–77 (2016). https:// doi. org/ 10. 1016/j. jcou. 2016. 06.
003
64. M.E. Hamzehie, H. Najibi, Prediction of acid gas solubility in
amine, ionic liquid and amino acid salt solutions using artifi cial
neural network and evaluating with new experimental measurements.
J. Nat. Gas Sci. Eng. 29 , 252–263 (2016). https:// doi. org/
10. 1016/j. jngse. 2016. 01. 014
65. G. Chen et al., Artifi cial neural network models for the prediction
of CO2 solubility in aqueous amine solutions. Int. J. Greenhouse
Gas Control 39 , 174–184 (2015)
66. K. Fu, T. Sema, Z. Liang, H. Liu, Y. Na, H. Shi, P. Tontiwachwuthikul,
Investigation of mass-transfer performance for CO2
absorption into diethylenetriamine (DETA) in a randomly packed
column. Ind. Eng. Chem. Res. 51 (37), 12058–12064 (2012).
https:// doi. org/ 10. 1021/ ie300 830h
67. K. Fu et al., Experimental study on mass transfer and prediction
using artifi cial neural network for CO2 absorption into aqueous
DETA. Chem. Eng. Sci. 100 , 195–202 (2013). https:// doi. org/ 10.
1016/j. ces. 2013. 04. 024
68. K. Fu, G. Chen, Z. Liang, T. Sema, R. Idem, P. Tontiwachwuthikul,
Analysis of mass transfer performance of monoethanolamine-
based CO2 absorption in a packed column using artifi cial
neural networks. Indust. Eng. Chem. Res. 53 (11), 4413–4423
(2014). https:// doi. org/ 10. 1021/ ie403 259g
69. M. Afkhamipour, M. Mofarahi, Eff ects of operating parameters
of packed columns on the KGav for CO2 absorption by amine
solutions using optimization–simulation framework. Sep. Purif.
Technol. 202 , 86–102 (2018). https:// doi. org/ 10. 1016/j. seppur.
2018. 03. 026
70. S. Dong, H. Quan, D. Zhao, H. Li, J. Geng, H. Liu, Generic
AI models for mass transfer coeffi cient prediction in aminebased
CO2 absorber, Part I: BPNN model. Chem. Eng. Sci. 264 ,
118165 (2022). https:// doi. org/ 10. 1016/j. ces. 2022. 118165
71. M.M. Ghiasi, M. Arabloo, A.H. Mohammadi, T. Barghi, Application
of ANFIS soft computing technique in modeling the CO2
capture with MEA, DEA, and TEA aqueous solutions. Int. J.
Greenhouse Gas Control 49 , 47–54 (2016). https:// doi. org/ 10.
1016/j. ijggc. 2016. 02. 015
72. M.M. Ghiasi, A. Hajinezhad, H. Yousefi , A.H. Mohammadi,
CO2 loading capacity of DEA aqueous solutions: Modeling and
assessment of experimental data. Int. J. Greenhouse Gas Control
56 , 289–301 (2017). https:// doi. org/ 10. 1016/j. ijggc. 2016. 11. 029
73. D. Abooali, R. Soleimani, A. Rezaei-Yazdi, Modeling
CO2 absorption in aqueous solutions of DEA, MDEA, and
DEA + MDEA based on intelligent methods. Sep. Sci. Technol.
55 (4), 697–707 (2019). https:// doi. org/ 10. 1080/ 01496 395. 2019.
15754 15
74. M. Haji-Sulaiman, M.K. Aroua, A. Benamor, Analysis of equilibrium
data of CO2 in aqueous solutions of diethanolamine (DEA),
methyldiethanolamine (MDEA) and their mixtures using the
modifi ed Kent Eisenberg model. Chem. Eng. Res. Des. 76 (8),
961–968 (1998)
75. G.T. Preston, J.M. Prausnitz, Solubilities of n-pentane and
1,3-butadiene in liquid nitrogen. J. Chem. Eng. Data 17 (4),
465–465 (2002). https:// doi. org/ 10. 1021/ je600 55a014
76. S. Ullah et al., CO2 solubility and thermophysical properties
in aqueous mixtures of piperazine and diethanolamine. Sustain.
Energy Technol. Assess. 53 , 102514 (2022). https:// doi. org/ 10.
1016/j. seta. 2022. 102514
77. S. Azizi, S.M. Peyghambarzadeh, M. Yousefi , R. Abedpour,
Experimental and statistical analysis of CO2 absorption in DEA/
water nanofl uid containing silicon dioxide nanoparticle. Part. Sci.
Technol. 41 (5), 674–682 (2023). https:// doi. org/ 10. 1080/ 02726
351. 2022. 21340 65
78. Jamaludin, S. N., & Salleh, R. M. (2018). Absorption of Carbon
Dioxide in the aqueous solution of Diethanolamine (DEA)
blended with 1-Butyl-1-Methylpyrrolidinium Trifl uoromethanesulfonate
[BmPyrr][OTf] at high pressure. In IOP Conference
Series: Materials Science and Engineering (Vol. 334, No. 1, p.
012055). IOP Publishing. https:// doi. org/ 10. 1088/ 1757- 899X/
334/1/ 012055 .
79. A. Shrestha, A. Mahmood, Review of deep learning algorithms
and architectures. IEEE access 7 , 53040–53065 (2019)
80. F.I. Syed, T. Muther, A.K. Dahaghi, S. Neghabhan, CO2 EOR
performance evaluation in an unconventional reservoir through
mechanistic constrained proxy modeling. Fuel 310 , 122390
(2022)
81. X. Ning, L. Jia, Y. Wei, X.-A. Li, F. Chen, Epi-DNNs: Epidemiological
priors informed deep neural networks for modeling
COVID-19 dynamics. Comput. Biol. Med. 158 , 106693 (2023)
82. S. Ramjee, S. Ju, D. Yang, X. Liu, A. E. Gamal, and Y. C.
Eldar, (2019) Fast deep learning for automatic modulation classifi
cation, arXiv preprint arXiv: 1901. 05850 , 2019.
83. K. He, X. Zhang, S. Ren, and J. Sun, (2016) Deep residual
learning for image recognition, In: Proceedings of the IEEE
conference on computer vision and pattern recognition , pp.
770–778.
84. K. Shaygan, S. Jamshidi, Prediction of rate of penetration in
directional drilling using data mining techniques. Geoenergy
Sci. Eng. 221 , 111293 (2023). https:// doi. org/ 10. 1016/j. petrol.
2022. 111293
85. O. Deymi, F. Hadavimoghaddam, S. Atashrouz, A. Abedi, A.
Hemmati-Sarapardeh, A. Mohaddespour, Employing ensemble
learning techniques for modeling nanofl uids’ specifi c heat capacity.
Int. Commun. Heat Mass Trans 143 , 106684 (2023). https://
doi. org/ 10. 1016/j. ichea tmass trans fer. 2023. 106684
86. F. Hidayat, T.M.S. Astsauri, Applied random forest for parameter
sensitivity of low salinity water Injection (LSWI) implementation
on carbonate reservoir. Alexandria Eng. J. 61 (3), 2408–2417
(2022). https:// doi. org/ 10. 1016/j. aej. 2021. 06. 096
87. M.S. Ozigis, J.D. Kaduk, C.H. Jarvis, P. da Conceição Bispo, H.
Balzter, Detection of oil pollution impacts on vegetation using
multifrequency SAR, multispectral images with fuzzy forest and
random forest methods. Environ. Pollut. 256 , 113360 (2020).
https:// doi. org/ 10. 1016/j. envpol. 2019. 113360
88. C. Zhang et al., Real-time and multi-objective optimization of
rate-of-penetration using machine learning methods. Geoenergy
Sci. Eng. 223 , 211568 (2023). https:// doi. org/ 10. 1016/j. geoen.
2023. 211568
89. B. Amiri-Ramsheh, M. Safaei-Farouji, A. Larestani, R. Zabihi,
A. Hemmati-Sarapardeh, Modeling of wax disappearance temperature
(WDT) using soft computing approaches: Tree-based
models and hybrid models. J. Petrol. Sci. Eng. 208 , 109774
(2022). https:// doi. org/ 10. 1016/j. petrol. 2021. 109774
90. D. Tian, S. Yang, Y. Gong, M. Geng, Y. Li, G. Hu, A comparative
study of machine learning methods for gas hydrate identifi cation.
Geoenergy Sci. Eng. 223 , 211564 (2023). https:// doi. org/
10. 1016/j. geoen. 2023. 211564
91. R. Gupta, C. Pierdzioch, A.A. Salisu, Oil-price uncertainty and
the UK unemployment rate: A forecasting experiment with random
forests using 150 years of data. Res. Policy 77 , 102662
(2022). https:// doi. org/ 10. 1016/j. resou rpol. 2022. 102662
92. H. Zheng, A. Mahmoudzadeh, B. Amiri-Ramsheh, A. Hemmati-
Sarapardeh, Modeling viscosity of CO2–N2 gaseous mixtures
using robust tree-based techniques: extra tree, random forest,
GBoost, and LightGBM. ACS Omega 8 (15), 13863–13875
(2023)
93. N. Zhang, M. Wei, J. Fan, M. Aldhaheri, Y. Zhang, B. Bai,
Development of a hybrid scoring system for EOR screening by
combining conventional screening guidelines and random forest
algorithm. Fuel 256 , 115915 (2019). https:// doi. org/ 10. 1016/j.
fuel. 2019. 115915
94. Krasnov, F., Glavnov, N., & Sitnikov, A. (2017, October). Application
of multidimensional interpolation and random forest
regression to enhanced oil recovery modeling. In: Proceedings
of the 13th Central & Eastern European Software Engineering
Conference in Russia (pp. 1-9).
95. M. Talebkeikhah et al., Experimental measurement and compositional
modeling of crude oil viscosity at reservoir conditions.
J. Taiwan Inst. Chem. Eng. 109 , 35–50 (2020). https:// doi. org/
10. 1016/j. jtice. 2020. 03. 001
96. Y. Freund, R.E. Schapire, A decision-theoretic generalization of
on-line learning and an application to boosting. J. Comput. Syst.
Sci. 55 (1), 119–139 (1997). https:// doi. org/ 10. 1006/ jcss. 1997.
1504
97. A. Dargahi-Zarandi, A. Hemmati-Sarapardeh, M. Shateri, N.A.
Menad, M. Ahmadi, Modeling minimum miscibility pressure
of pure/impure CO2-crude oil systems using adaptive boosting
support vector regression: Application to gas injection processes.
J. Petrol. Sci. Eng. 184 , 106499 (2020). https:// doi. org/ 10. 1016/j.
petrol. 2019. 106499
98. R.J. Obaid et al., Novel and accurate mathematical simulation of
various models for accurate prediction of surface tension parameters
through ionic liquids. Arabian J. Chem. 15 (11), 104228
(2022). https:// doi. org/ 10. 1016/j. arabjc. 2022. 104228
99. M. Nait Amar, M. Shateri, A. Hemmati-Sarapardeh, A. Alamatsaz,
Modeling oil-brine interfacial tension at high pressure and
high salinity conditions. J. Petrol. Sci. Eng. 183 , 106413 (2019).
https:// doi. org/ 10. 1016/j. petrol. 2019. 106413
100. R. Nakhaei-Kohani et al., Machine learning assisted Structurebased
models for predicting electrical conductivity of ionic
liquids. J. Mol. Liq. 362 , 119509 (2022). https:// doi. org/ 10.
1016/j. molliq. 2022. 119509
101. V. Vapnik, The nature of statistical learning theory (Springer
science & business media, Springer, New York, 1999)
102. E. Hadavandi, S.C. Chelgani, Estimation of coking indexes based
on parental coal properties by variable importance measurement
and boosted-support vector regression method. Measurement
135 , 306–311 (2019)
103. M. Hosseinzadeh, A. Hemmati-Sarapardeh, Toward a predictive
model for estimating viscosity of ternary mixtures containing
ionic liquids. J. Mol. Liq. 200 , 340–348 (2014). https:// doi. org/
10. 1016/j. molliq. 2014. 10. 033
104. Hemmati-Sarapardeh, A., Larestani, A., Menad, N. A., &
Hajirezaie, S. (2020). Applications of artifi cial intelligence techniques
in the petroleum industry. Gulf Professional Publishing.
105. P. Rousseeuw and A. Leroy, (1987) Robust regression and outlier
detection: Wiley Interscience, New York
106. P.J. Rousseeuw, B.C. van Zomeren, Unmasking multivariate
outliers and leverage points. J. American Stat. Assoc. 85 (411),
633–639 (1990). https:// doi. org/ 10. 1080/ 01621 459. 1990. 10474
920
107. C.R. Goodall, 13 Computation using the QR decomposition. In
Handbook of Statistics, Elsevier (1993). https:// doi. org/ 10. 1016/
S0169- 7161(05) 80137-3