Overall
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 22, 2023
Accepted November 8, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
Catalytic Activity of CO2-Derived Transition Metal–Carbon Catalysts in Methane Pyrolysis
Abstract
This study examined the catalytic activity and stability of transition metal@C (carbon) catalysts in methane pyrolysis for
hydrogen and solid carbon production. The carbon support for the catalysts was sustainably synthesized using CO 2 as the
carbon source. X-ray diff raction analysis was used to confi rm the presence of metallic phases in the as-calcined catalysts
without requiring an additional H 2 reduction step. The apparent activation energies of the catalysts were determined using
Arrhenius plots, with Ni@C having the lowest value (71 kJ∙mol −1 ), followed by Co@C (89 kJ∙mol −1 ), Fe@C (100 kJ∙mol −1 ),
and Cu@C (122 kJ∙mol −1 ). The carbon support exhibited an apparent activation energy of 150 kJ∙mol −1 , indicating its superior
catalytic performance compared with traditional carbon-based catalysts. The reaction order demonstrated fi rst-order
reactions, indicating that the rate-determining step is associated with the fi rst C–H bond cleavage in methane. The Ni@C and
Co@C catalysts demonstrated promising catalytic activity and stability for methane pyrolysis, with the formation of crystalline
carbon and metal particle fragmentation playing crucial roles in enhancing their performance. However, the formation
of carbide species contributed to the deactivation of Fe@C.
Keywords
References
Schaaf, F. Pagani, F. Monforti-Ferrario, J.G.J. Olivier, R. Quadrelli,
CO2 emissions of all world countries. JRC Sci. for Policy
Report, European Commission, EUR. (2022). https:// doi. org/ 10.
2760/ 07904
2. C. Le Quéré, G.P. Peters, P. Friedlingstein, R.M. Andrew, J.G.
Canadell, S.J. Davis, R.B. Jackson, M.W. Jones, Fossil CO2 emissions
in the post-COVID-19 era. Nat. Clim. Chang. 11 , 197–199
(2021). https:// doi. org/ 10. 1038/ s41558- 021- 01001-0
3. A. Pareek, R. Dom, J. Gupta, J. Chandran, V. Adepu, P.H. Borse,
Insights into renewable hydrogen energy: Recent advances and
prospects. Mater. Sci. Energy Technol. 3 , 319–327 (2020). https://
doi. org/ 10. 1016/j. mset. 2019. 12. 002
4. M.J. Chae, J.H. Kim, B. Moon, S. Park, Y.S. Lee, The present
condition and outlook for hydrogen-natural gas blending technology.
Korean J. Chem. Eng. 39 , 251–262 (2022). https:// doi. org/
10. 1007/ s11814- 021- 0960-8
5. W.S. Chai, Y. Bao, P. Jin, G. Tang, L. Zhou, A review on ammonia,
ammonia-hydrogen and ammonia-methane fuels. Renew. and
Sustainable Energy Rev. 147 , 111254 (2021). https:// doi. org/ 10.
1016/j. rser. 2021. 111254
6. S. Park, Y. Shin, E. Jeong, M. Han, Techno-economic analysis of
green and blue hybrid processes for ammonia production. Korean
J. Chem. Eng. (2023). https:// doi. org/ 10. 1007/ s11814- 023- 1520-1
7. T.A. Le, Q.C. Do, Y. Kim, T.-W. Kim, H.-J. Chae, A review on
the recent developments of ruthenium and nickel catalysts for
COx-free H2 generation by ammonia decomposition. Korean
J. Chem. Eng. 38 , 1087–1103 (2021). https:// doi. org/ 10. 1007/
s11814- 021- 0767-7
8. M. Amin, H.H. Shah, A.G. Fareed, W.U. Khan, E. Chung, A.
Zia, Z.U. Rahman Farooqi, C. Lee, Hydrogen production through
renewable and non-renewable energy processes and their impact
on climate change. Int. J. Hydrogen Energy 47 , 33112–33134
(2022). https:// doi. org/ 10. 1016/j. ijhyd ene. 2022. 07. 172
9. R.S. El-Emam, H. Özcan, Comprehensive review on the technoeconomics
of sustainable large-scale clean hydrogen production.
J. Clean. Prod. 220 , 593–609 (2019). https:// doi. org/ 10. 1016/j.
jclep ro. 2019. 01. 309
10. M. Hermesmann, T.E. Müller, Green, Turquoise, Blue, or Grey?
Environmentally friendly Hydrogen Production in Transforming
Energy Systems. Prog. Energy Combust. Sci. 90 , 100996 (2022).
https:// doi. org/ 10. 1016/j. pecs. 2022. 100996
11. R.W. Howarth, M.Z. Jacobson, How green is blue hydrogen?
Energy Sci. Eng. 9 , 1676–1687 (2021). https:// doi. org/ 10. 1002/
ese3. 956
12. M. Yu, K. Wang, H. Vredenburg, Insights into low-carbon hydrogen
production methods: Green, blue and aqua hydrogen. Int. J.
Hydrogen Energy 46 , 21261–21273 (2021). https:// doi. org/ 10.
1016/j. ijhyd ene. 2021. 04. 016
13. B. Parkinson, P. Balcombe, J.F. Speirs, A.D. Hawkes, K. Hellgardt,
Levelized cost of CO 2 mitigation from hydrogen production
routes. Energy Environ. Sci. (2019). https:// doi. org/ 10. 1039/
c8ee0 2079e
14. L. Alves, V. Pereira, T. Lagarteira, A. Mendes, Catalytic methane
decomposition to boost the energy transition: Scientifi c and
technological advancements. Renew. and Sustainable Energy Rev.
137 , 110465 (2021). https:// doi. org/ 10. 1016/j. rser. 2020. 110465
15. B. Parkinson, M. Tabatabaei, D.C. Upham, B. Ballinger, C. Greig,
S. Smart, E. McFarland, Hydrogen production using methane:
Techno-economics of decarbonizing fuels and chemicals. Int.
J. Hydrogen Energy 43 , 2540–2555 (2018). https:// doi. org/ 10.
1016/j. ijhyd ene. 2017. 12. 081
16. J. Boo, E.H. Ko, N.K. Park, C. Ryu, Y.H. Kim, J. Park, D. Kang,
Methane pyrolysis in molten potassium chloride: An experimental
and economic analysis. Energies (Basel) (2021). https:// doi. org/
10. 3390/ en142 38182
17. D. Kang, N. Rahimi, M.J. Gordon, H. Metiu, E.W. McFarland,
Catalytic methane pyrolysis in molten MnCl2-KCl. Appl. Catal.
B 254 , 659–666 (2019). https:// doi. org/ 10. 1016/j. apcatb. 2019. 05.
026
18. H.F. Abbas, W.M.A. Wan Daud, Hydrogen production by methane
decomposition: A review. Int. J. Hydrogen Energy 35 , 1160–1190
(2010). https:// doi. org/ 10. 1016/j. ijhyd ene. 2009. 11. 036
19. Y. Li, D. Li, G. Wang, Methane decomposition to COx-free
hydrogen and nano-carbon material on group 8–10 base metal
catalysts: A review. Catal. Today 162 , 1–48 (2011). https:// doi.
org/ 10. 1016/j. cattod. 2010. 12. 042
20. Z. Fan, W. Weng, J. Zhou, D. Gu, W. Xiao, Catalytic decomposition
of methane to produce hydrogen: A review. J. Energy Chem.
58 , 415–430 (2021)
21. D. Kang, C. Palmer, D. Mannini, N. Rahimi, M.J. Gordon, H.
Metiu, E.W. McFarland, Catalytic methane pyrolysis in molten
alkali chloride salts containing iron. ACS Catal. 10 , 7032–7042
(2020). https:// doi. org/ 10. 1021/ acsca tal. 0c012 62
22. C. Su, K.P. Loh, Carbocatalysts: Graphene oxide and its derivatives.
Acc. Chem. Res. 46 , 2275–2285 (2013). https:// doi. org/ 10.
1021/ ar300 118v
23. N. Muradov, F. SmithT-Raissi, A, Catalytic activity of carbons for
methane decomposition reaction. Catal. Today (2005). https:// doi.
org/ 10. 1016/j. cattod. 2005. 02. 018
24. K. Otsuka, H. Ogihara, S. Takenaka, Decomposition of methane
over Ni catalysts supported on carbon fi bers formed from diff erent
hydrocarbons. Carbon N Y. 41 , 223–233 (2003). https:// doi. org/
10. 1016/ S0008- 6223(02) 00308-1
25. Z. Bai, H. Chen, B. Li, W. Li, Methane decomposition over Ni
loaded activated carbon for hydrogen production and the formation
of fi lamentous carbon. Int. J. Hydrogen Energy 32 , 32–37
(2007). https:// doi. org/ 10. 1016/j. ijhyd ene. 2006. 06. 030
26. M. Szymańska, A. Malaika, P. Rechnia, A. Miklaszewska, M.
Kozłowski, Metal/activated carbon systems as catalysts of methane
decomposition reaction. Catal. Today 249 , 94–102 (2015).
https:// doi. org/ 10. 1016/j. cattod. 2014. 11. 025
27. J. Zhang, W. Xie, X. Li, Q. Hao, H. Chen, X. Ma, Methane decomposition
over Ni/carbon catalysts prepared by selective gasifi cation
of coal char. Energy Convers. Manag. 177 , 330–338 (2018).
https:// doi. org/ 10. 1016/j. encon man. 2018. 09. 075
28. Y. Wang, Y. Zhang, S. Zhao, J. Zhu, L. Jin, H. Hu, Preparation
of bimetallic catalysts Ni-Co and Ni-Fe supported on activated
carbon for methane decomposition. Carbon Resources Conversion
3 , 190–197 (2020). https:// doi. org/ 10. 1016/j. crcon. 2020. 12. 002
29. X. Yang, E. Yang, B. Hu, J. Yan, F. Shangguan, Q. Hao, H. Chen,
J. Zhang, X. Ma, Nanofabrication of Ni-incorporated three-dimensional
ordered mesoporous carbon for catalytic methane decomposition.
J. Environ. Chem. Eng. 10 , 107451 (2022). https:// doi.
org/ 10. 1016/j. jece. 2022. 107451
30. D. Kang, J.W. Lee, Enhanced methane decomposition over nickel–
carbon–B2O3 core–shell catalysts derived from carbon dioxide.
Appl. Catal. B 186 , 41–55 (2016). https:// doi. org/ 10. 1016/j.
apcatb. 2015. 12. 045
31. J. Zhang, J.W. Lee, Production of boron-doped porous carbon
by the reaction of carbon dioxide with sodium borohydride at
atmospheric pressure. Carbon N Y 53 , 216–221 (2013). https://
doi. org/ 10. 1016/j. carbon. 2012. 10. 051
32. B. Fubini, M. Ghiazza, I. Fenoglio, Physico-chemical features of
engineered nanoparticles relevant to their toxicity. Nanotoxicology
4 , 347–363 (2010). https:// doi. org/ 10. 3109/ 17435 390. 2010.
509519
33. M. Pumera, A. Ambrosi, E.L.K. Chng, Impurities in graphenes
and carbon nanotubes and their infl uence on the redox properties.
Chem. Sci. 3 , 3347–3355 (2012). https:// doi. org/ 10. 1039/ C2SC2
1374E
34. W. Kiciński, S. Dyjak, Transition metal impurities in carbon-based
materials: Pitfalls, artifacts and deleterious eff ects. Carbon N Y
168 , 748–845 (2020). https:// doi. org/ 10. 1016/j. carbon. 2020. 06.
004
35. J. Zhang, A. Byeon, J.W. Lee, Boron-doped carbon–iron nanocomposites
as effi cient oxygen reduction electrocatalysts derived
from carbon dioxide. Chem. Commun. 50 , 6349–6352 (2014).
https:// doi. org/ 10. 1039/ C4CC0 1903B
36. J.C. Goak, C.J. Lim, Y. Hyun, E. Cho, Y. Seo, N. Lee, Effi cient
gas-phase purifi cation using chloroform for metal-free multiwalled
carbon nanotubes. Carbon N Y 148 , 258–266 (2019).
https:// doi. org/ 10. 1016/j. carbon. 2019. 03. 077
37. J.S. Stefano, D.P. Rocha, R.M. Dornellas, L.C.D. Narciso, S.R.
Krzyzaniak, P.A. Mello, E. Nossol, E.M. Richter, R.A.A. Munoz,
Highly sensitive amperometric detection of drugs and antioxidants
on non-functionalized multi-walled carbon nanotubes: Eff ect of
metallic impurities? Electrochim. Acta 240 , 80–89 (2017). https://
doi. org/ 10. 1016/j. elect acta. 2017. 04. 050
38. G.M. Kim, S. Baik, J.W. Lee, Enhanced oxygen reduction from
the insertion of cobalt into nitrogen-doped porous carbons. RSC
Adv. 5 , 87971–87980 (2015). https:// doi. org/ 10. 1039/ C5RA1
5635A
39. M.H. Kim, E.K. Lee, J.H. Jun, S.J. Kong, G.Y. Han, B.K.
Lee, T.-J. Lee, K.J. Yoon, Hydrogen production by catalytic
decomposition of methane over activated carbons: kinetic study.
Int. J. Hydrogen Energy 29 , 187–193 (2004). https:// doi. org/ 10.
1016/ S0360- 3199(03) 00111-3
40. H. Nishii, D. Miyamoto, Y. Umeda, H. Hamaguchi, M. Suzuki,
T. Tanimoto, T. Harigai, H. Takikawa, Y. Suda, Catalytic activity
of several carbons with diff erent structures for methane decomposition
and by-produced carbons. Appl. Surf. Sci. 473 , 291–297
(2019). https:// doi. org/ 10. 1016/j. apsusc. 2018. 12. 073
41. S.H. Sharif Zein, A.R. Mohamed, P.S. Talpa Sai, Kinetic studies
on catalytic decomposition of methane to hydrogen and carbon
over Ni/TiO2 catalyst. Ind. Eng. Chem. Res. 43 , 4864–4870
(2004). https:// doi. org/ 10. 1021/ ie034 208f
42. D. Bae, Y. Kim, E.H. Ko, S. Ju Han, J.W. Lee, M. Kim, D. Kang,
Methane pyrolysis and carbon formation mechanisms in molten
manganese chloride mixtures. Appl. Energy 336 , 120810 (2023).
https:// doi. org/ 10. 1016/j. apene rgy. 2023. 120810
43. Z. Bai, H. Chen, B. Li, W. Li, Catalytic decomposition of methane
over activated carbon. J. Anal. Appl. Pyrolysis 73 , 335–341
(2005). https:// doi. org/ 10. 1016/j. jaap. 2005. 03. 004
44. Z. Bai, H. Chen, W. Li, B. Li, Hydrogen production by methane
decomposition over coal char. Int. J. Hydrogen Energy 31 ,
899–905 (2006). https:// doi. org/ 10. 1016/j. ijhyd ene. 2005. 08. 001
45. C.H. Bartholomew, Mechanisms of catalyst deactivation. Appl.
Catal. A Gen. 212 , 17–60 (2001). https:// doi. org/ 10. 1016/ S0926-
860X(00) 00843-7
46. U.P.M. Ashik, W.M.A.W. Daud, Probing the diff erential methane
decomposition behaviors of n-Ni/SiO2, n-Fe/SiO2 and n-Co/
SiO2 catalysts prepared by co-precipitation cum modifi ed Stöber
method. RSC Adv. 5 , 67227–67241 (2015). https:// doi. org/ 10.
1039/ C5RA1 0997C
47. J.L. Pinilla, R. Utrilla, M.J. Lázaro, R. Moliner, I. Suelves, A.B.
García, Ni- and Fe-based catalysts for hydrogen and carbon nanofi
lament production by catalytic decomposition of methane in a
rotary bed reactor. Fuel Process. Technol. 92 , 1480–1488 (2011).
https:// doi. org/ 10. 1016/j. fuproc. 2011. 03. 009
48. L. Zhou, Y. Guo, K. Hideo, Unsupported nickel catalysts for methane
catalytic decomposition into pure hydrogen. AIChE J. 60 ,
2907–2917 (2014). https:// doi. org/ 10. 1002/ aic. 14487