ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Overall

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 27, 2023
Accepted August 31, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

Design, Characterization and Performance of the Modifi ed Chitosan–Alumina Nanocomposites for the Adsorption of Hydroquinone and Arsenic (V) Ions

Chemical Engineering Faculty , Sahand University of Technology 1Chemistry & Process Engineering Department , Niroo Research Institute
Korean Journal of Chemical Engineering, May 2024, 41(5), 1535-1550(16), https://doi.org/10.1007/s11814-024-00078-5

Abstract

The aim of this study was to prepare the well-dispersed modifi ed chitosan–alumina (CA) with size less than 50 nm by the

facile synthesis method to evaluate the adsorption of hydroquinone and arsenic (V) ions in the aqueous solutions. Derived

gamma-alumina from boehmite was coated and modifi ed by chitosan and sodium dodecyl sulfate (SDS) and salicylic acid,

respectively. The characterization of nanocomposites was studied by XRD, FTIR, FESEM, EDX TEM and BET analysis. The

chitosan and SDS phases were detected in the structure of the adsorbent as confi rmed by XRD achievements. A quadratic

polynomial model was developed to describe the eff ect of the operating parameters including pH, temperature and initial

concentration on the adsorption capacity of the prepared sample while the experimental data were designed by a response

surface method (RSM). The maximum adsorption capacity for the best adsorbent named CSAS3 was measured to be 86.95

and 95.24 mg/g for HQ and As (V) ions by employing linear Langmuir equation, respectively. The kinetic study indicated

that the experimental data were in an appropriate matching with the linearized pseudo-quadratic kinetic equation ( R 2 = 0.999).

The results showed the successful removal of hydroquinone and arsenic ions form the aqueous after 5 consecutive cycles.

References

1. M.K. Abugazleh, B. Rougeau, H. Ali, Adsorption of catechol and
hydroquinone on titanium oxide and iron (iii) oxide. J. Environ.
Chem. Eng. 8 , 104180 (2020)
2. M.A. Ahghari, M.R. Ahghari, M. Kamalzare, A. Maleki, Design,
synthesis, and characterization of novel eco-friendly chitosanagio3
bionanocomposite and study its antibacterial activity. Sci.
Rep. 12 , 10491 (2022)
3. F. AkbarBandari, M. Zabihi, E. Fatehifar, Remarkable adsorption
of hydroquinone as an anion contaminant by using the magnetic
supported bimetallic (nicu-mof@ mac) nanocomposites in aqueous
solutions. Environ. Sci. Pollut. Res. 28 , 69272 (2021)
4. M. Al-Yaari, T.H. Aldhyani, S. Rushd, Prediction of arsenic
removal from contaminated water using artifi cial neural network
model. Appl. Sci. 12 , 999 (2022)
5. S. Alka, S. Shahir, N. Ibrahim, M.J. Ndejiko, D.-V.N. Vo, F. Abd
Manan, Arsenic removal technologies and future trends: a mini
review. J. Clean. Prod. 278 , 123805 (2021)
6. L.A. Amola, T. Kamgaing, R.F. Tiegam Tagne, C.D. Atemkeng,
I.-H.T. Kuete, S.G. Anagho, Optimized removal of hydroquinone
and resorcinol by activated carbon based on shea residue (vitellaria
paradoxa): thermodynamics, adsorption mechanism, nonlinear
kinetics, and isotherms. J. Chem. 2022 , 1 (2022)
7. F. Amri, S. Husseinsyah, K. Hussin, Eff ect of sodium dodecyl
sulfate on mechanical and thermal properties of polypropylene/
chitosan composites. J. Thermoplast. Compos. Mater. 26 , 878
(2013)
8. S. Ashraf, A. Siddiqa, S. Shahida, S. Qaisar, Titanium-based
nanocomposite materials for arsenic removal from water: a review.
Heliyon 5 , e01577 (2019)
9. N. Assaad, G. Sabeh, M. Hmadeh, Defect control in zr-based
metal–organic framework nanoparticles for arsenic removal from
water. ACS Appl. Nano Mater. 3 , 8997 (2020)
10. R.E.K. Billah, M.A. Islam, H. Lgaz, E.C. Lima, Y. Abdellaoui,
Y. Rakhila, O. Goudali, H. Majdoubi, A.A. Alrashdi, M. Agunaou,
Shellfi sh waste-derived mesoporous chitosan for impressive
removal of arsenic (v) from aqueous solutions: a combined
experimental and computational approach. Arab. J. Chem. 15 ,
104123 (2022)
11. J.C. Burillo, L. Ballinas, G. Burillo, E. Guerrero-Lestarjette, D.
Lardizabal-Gutierrez, H. Silva-Hidalgo, Chitosan hydrogel synthesis
to remove arsenic and fl uoride ions from groundwater. J.
Hazard. Mater. 417 , 126070 (2021)
12. S. Chatterjee, H.N. Tran, O.-B. Godfred, S.H. Woo, Supersorption
capacity of anionic dye by newer chitosan hydrogel capsules via
green surfactant exchange method. ACS Sustain. Chem. Eng. 6 ,
3604 (2018)
13. T.S. Choong, T. Chuah, Y. Robiah, F.G. Koay, I. Azni, Arsenic
toxicity, health hazards and removal techniques from water: an
overview. Desalination 217 , 139 (2007)
14. K.D. Dobson, A.J. McQuillan, In situ infrared spectroscopic analysis
of the adsorption of aliphatic carboxylic acids to Tio 2 , Zro 2 ,
Al 2 O 3 , and Ta 2 O 5 from aqueous solutions. Spectrochim. Acta Part
A Mol. Biomol. Spectrosc. 55 , 1395 (1999)
15. H. Ebadollahzadeh, M. Zabihi, Competitive adsorption of methylene
blue and pb (ii) ions on the nano-magnetic activated carbon
and alumina. Mater. Chem. Phys. 248 , 122893 (2020)
16. A. El-araby, L. El Ghadraoui, F. Errachidi, Usage of biological
chitosan against the contamination of post-harvest treatment of
strawberries by Aspergillus niger . Front. Sustain. Food Syst. 6 ,
881434 (2022)
17. M. Gallegos-Garcia, K. Ramírez-Muñiz, S. Song, Arsenic removal
from water by adsorption using iron oxide minerals as adsorbents:
a review. Miner. Process. Extr. Metall. Rev. 33 , 301 (2012)
18. M.R. Gandhi, G. Kousalya, N. Viswanathan, S. Meenakshi, Sorption
behaviour of copper on chemically modifi ed chitosan beads
from aqueous solution. Carbohyd. Polym. 83 , 1082 (2011)
19. A. Ghosh, M.A. Ali, Studies on physicochemical characteristics
of chitosan derivatives with dicarboxylic acids. J. Mater. Sci. 47 ,
1196 (2012)
20. X. Guo, F. Chen, Removal of arsenic by bead cellulose loaded
with iron oxyhydroxide from groundwater. Environ. Sci. Technol.
39 , 6808 (2005)
21. M. Habuda-Stanić, M. Nujić, Arsenic removal by nanoparticles:
a review. Environ. Sci. Pollut. Res. 22 , 8094 (2015)
22. Y.-S. Han, J.-H. Park, Y. Min, D.-H. Lim, Competitive adsorption
between phosphate and arsenic in soil containing iron sulfi de: xas
experiment and dft calculation approaches. Chem. Eng. J. 397 ,
125426 (2020)
23. A. Hassan, A. Abdel-Mohsen, H. Elhadidy, Adsorption of arsenic
by activated carbon, calcium alginate and their composite beads.
Int. J. Biol. Macromol. 68 , 125 (2014)
24. C. Hu, H. Liu, G. Chen, J. Qu, Eff ect of aluminum speciation on
arsenic removal during coagulation process. Sep. Purif. Technol.
86 , 35 (2012)
25. M.M. Islam, M.N. Khan, S. Biswas, T.R. Choudhury, P. Haque,
T.U. Rashid, M.M. Rahman, Preparation and characterization of
bijoypur clay-crystalline cellulose composite for application as
an adsorbent. Adv. Mater. Sci. (2017). https:// doi. org/ 10. 15761/
AMS. 10001 26
26. E.-K. Jeon, S. Ryu, S.-W. Park, L. Wang, D.C. Tsang, K. Baek,
Enhanced adsorption of arsenic onto alum sludge modifi ed by
calcination. J. Clean. Prod. 176 , 54 (2018)
27. X. Jiang, H.-Y. Chen, L.-L. Liu, L.-G. Qiu, X. Jiang, Fe 3 O 4
embedded zif-8 nanocrystals with ultra-high adsorption capacity
towards hydroquinone. J. Alloy. Compd. 646 , 1075 (2015)
28. C. Lasko, K. Adams, E. DeBenedet, P. West, A simple sulfuric
acid pretreatment method to improve the adsorption of cr (vi) by
chitosan. J. Appl. Polym. Sci. 93 , 2808 (2004)
29. L. Li, L. Fan, M. Sun, H. Qiu, X. Li, H. Duan, C. Luo, Adsorbent
for hydroquinone removal based on graphene oxide functionalized
with magnetic cyclodextrin–chitosan. Int. J. Biol. Macromol. 58 ,
169 (2013)
30. W.-Y. Li, J. Liu, H. Chen, Y. Deng, B. Zhang, Z. Wang, X. Zhang,
S. Hong, Application of oxalic acid cross-linking activated alumina/
chitosan biocomposites in defl uoridation from aqueous solution.
Investigation of adsorption mechanism. Chem. Eng. J. 225 ,
865 (2013)
31. H. Lun, J. Ouyang, H. Yang, Enhancing dispersion of halloysite
nanotubes via chemical modifi cation. Phys. Chem. Miner. 41 , 281
(2014)
32. W. Luo, Z. Bai, Y. Zhu, Fast removal of co (ii) from aqueous solution
using porous carboxymethyl chitosan beads and its adsorption
mechanism. RSC Adv. 8 , 13370 (2018)
33. Y. Mamindy-Pajany, C. Hurel, N. Marmier, M. Roméo, Arsenic
(v) adsorption from aqueous solution onto goethite, hematite,
magnetite and zero-valent iron: eff ects of ph, concentration and
reversibility. Desalination 281 , 93 (2011)
34. T. Mishra, D.K. Mahato, A comparative study on enhanced arsenic
(v) and arsenic (iii) removal by iron oxide and manganese
oxide pillared clays from ground water. J. Environ. Chem. Eng.
4 , 1224 (2016)
35. E. Nematollahi, M. Pourmadadi, F. Yazdian, H. Fatoorehchi, H.
Rashedi, M.N. Nigjeh, Synthesis and characterization of chitosan/
polyvinylpyrrolidone coated nanoporous γ-alumina as a ph-sensitive
carrier for controlled release of quercetin. Int. J. Biol. Macromol.
183 , 600 (2021)
36. N.R. Nicomel, K. Leus, K. Folens, P. Van Der Voort, G. Du Laing,
Technologies for arsenic removal from water: current status and
future perspectives. Int. J. Environ. Res. Public Health 13 , 62
(2016)
37. D.Q. Oliveira, M. Gonçalves, L.C. Oliveira, L.R. Guilherme,
Removal of as (v) and cr (vi) from aqueous solutions using solid
waste from leather industry. J. Hazard. Mater. 151 , 280 (2008)
38. B.S. Rathi, P.S. Kumar, A review on sources, identifi cation and
treatment strategies for the removal of toxic arsenic from water
system. J. Hazard. Mater. 418 , 126299 (2021)
39. F. Sadegh-Zadeh, B.J. Seh-Bardan, Adsorption of as (iii) and as
(v) by fe coated biochars and biochars produced from empty fruit
bunch and rice husk. J. Environ. Chem. Eng. 1 , 981 (2013)
40. N. Salahudeen, A.S. Ahmed, H. Ala’a, M. Dauda, S.M. Waziri,
B.Y. Jibril, Synthesis of gamma alumina from kankara kaolin
using a novel technique. Appl. Clay Sci. 105 , 170 (2015)
41. S. Shengli, L. Junping, L. Qi, N. Fangru, F. Jia, X. Shulian, Optimized
preparation of phragmites australis activated carbon using
the box-behnken method and desirability function to remove hydroquinone.
Ecotoxicol. Environ. Saf. 165 , 411 (2018)
42. F. Silerio-Vázquez, J.B. Proal Nájera, J. Bundschuh, M.T. Alarcon-
Herrera, Photocatalysis for arsenic removal from water: considerations
for solar photocatalytic reactors. Environ. Sci. Pollut.
Res. 29 , 61594 (2022)
43. A.L. Srivastav, T.D. Pham, S.C. Izah, N. Singh, P.K. Singh, Biochar
adsorbents for arsenic removal from water environment: a
review. Bull. Environ. Contam. Toxicol. 108 , 616 (2021)
44. S. Suresh, V. Chandra Srivastava, I. Mani Mishra, Adsorption of
hydroquinone in aqueous solution by granulated activated carbon.
J. Environ. Eng. 137 , 1145 (2011)
45. A. Tarlani, M. Isari, A. Khazraei, M. Eslami Moghadam, New
sol–gel derived aluminum oxide-ibuprofen nanocomposite as a
controlled releasing medication. Nanomed. Res. J. 2 , 28 (2017)
46. B.R. Vieira, A.M. Pintor, R.A. Boaventura, C.M. Botelho, S.C.
Santos, Arsenic removal from water using iron-coated seaweeds.
J. Environ. Manag. 192 , 224 (2017)
47. H. Wang, X. Liang, Y. Liu, T. Li, K.-Y.A. Lin, Recycling spent
iron-based disposable-chemical-warmer as adsorbent for As (v)
removal from aqueous solution. Resour. Conserv. Recycl. 168 ,
105284 (2021)
48. H. Wang, W. Sun, X. Liang, H. Zou, X. Jiao, K.A. Lin, T. Li,
Two-dimensional Fe 2 o 3 nanosheets as adsorbent for the removal
of Pb (ii) from aqueous solution. J. Mol. Liq. 335 , 116197 (2021)
49. Y. Wang, Z. Liu, W. Huang, J. Lu, S. Luo, B. Czech, T. Li, H.
Wang, Capture-reduction mechanism for promoting Cr (vi)
removal by sulfi dated microscale zerovalent iron/sulfur-doped
graphene-like biochar composite. Carbon Res 2 , 11 (2023)
50. Z. Wen, J. Lu, Y. Zhang, G. Cheng, S. Huang, J. Chen, R. Xu,
Y.-A. Ming, Y. Wang, R. Chen, Facile inverse micelle fabrication
of magnetic ordered mesoporous iron cerium bimetal oxides with
excellent performance for arsenic removal from water. J. Hazard.
Mater. 383 , 121172 (2020)
51. C. Wu, L. Huang, S.-G. Xue, Y.-Y. Huang, W. Hartley, M.-Q.
Cui, M.-H. Wong, Arsenic sorption by red mud-modifi ed biochar
produced from rice straw. Environ. Sci. Pollut. Res. 24 , 18168
(2017)
52. X. Xie, C. Lu, R. Xu, X. Yang, L. Yan, C. Su, Arsenic removal
by manganese-doped mesoporous iron oxides from groundwater:
performance and mechanism. Sci. Total. Environ. 806 , 150615
(2022)
53. N. Yıldız, R. Gönülşen, H. Koyuncu, A. Çalımlı, Adsorption of
benzoic acid and hydroquinone by organically modifi ed bentonites.
Colloids Surf. A 260 , 87 (2005)
54. M. Zaw, M.T. Emett, Arsenic removal from water using advanced
oxidation processes. Toxicol. Lett. 133 , 113 (2002)
55. K. Zhou, J. Zhang, Y. Xiao, Z. Zhao, M. Zhang, L. Wang, X.
Zhang, C. Zhou, High-effi ciency adsorption of and competition
between phenol and hydroquinone in aqueous solution on highly
cationic amino-poly (vinylamine)-functionalized go-(o-mwcnts)
magnetic nanohybrids. Chem. Eng. J. 389 , 124223 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로