ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Overall

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 24, 2006
Accepted May 29, 2007
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Downloaded

A review on UV/TiO2 photocatalytic oxidation process

Faculty of Engineering, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia 1Faculty of Engineering, Sunchon National University, 315 Maegok Dong, Suncheon, Chonnam 540-742, Korea
S.vigneswaran@uts.edu.au
Korean Journal of Chemical Engineering, January 2008, 25(1), 64-72(9), 10.1007/s11814-008-0011-8
downloadDownload PDF

Abstract

Advanced oxidation processes (AOPs) with UV irradiation and photocatalyst titanium dioxide (TiO2) are gaining growing acceptance as an effective wastewater treatment method. A comprehensive review of the UV-TiO2 photocatalytic oxidation process was conducted with an insight into the mechanism involved, catalyst TiO2, irradiation sources, types of reactors, comparison between effective modes of TiO2 application as immobilized on surface or as suspension, and photocatalytic hybrid membrane system. Photocatalytic degradation technique with titanium dioxide is generally applied for treating wastewater containing organic contaminants due to its ability to achieve complete mineralization of the organic contaminants under mild conditions such as ambient temperature and ambient pressure. Recently, photocatalysis studies using TiO2 have been gaining attention for the degradation of persistent organic pollutants and other organic chemicals which are known to be endocrine disruptors. Treatment of wastewater in a titanium dioxide-suspended slurry reactor has been widely utilized due to its simplicity and enhanced degradation efficiency. However, this system requires separation of TiO2 from water after the photocatalytic process. The final section of the manuscript focuses on the removal of TiO2 using a membrane hybrid system. A two-stage coagulation and sedimentation process coupled with microfiltration hollow-fibre membrane process was found to achieve complete removal of TiO2, and the recovered TiO2 can be reused for a photocatalytic process after regeneration.

References

Frank SN, Bard AJ, J. Phys. Chem., 81, 1484 (1977)
Pruden AL, Ollis DF, J. Catal., 82, 404 (1983)
Hsiao CY, Lee CL, Ollis DF, J. Catal., 82, 418 (1983)
Ollis DF, Hsiao CY, Budiman L, Lee CL, J. Catal., 88, 89 (1984)
Ollis DF, Environ. Sci. Technol., 19, 480 (1985)
Sappideen S, PhD Dissertation, UNSW (2000)
Tang JW, Zou ZG, Yin J, Ye J, Chem. Phys. Lett., 382(1-2), 175 (2003)
Serpone N, Pelizzetti E, Photocatalysis: Fundamentals and applications, John Wiley & Sons, New York (1989)
Schiavello M, Sclafani A, Thermodynamics and kinetic aspects in photocatalysis, Photocatalysis: Fundamentals and applications, John Wiley & Sons, Canada (1989)
Sakthivel S, Neppolian B, Arabindoo B, Palanichamy M, Murugesan V, J. Sci. Ind. Res., 59, 556 (2000)
Okomoto K, Yamamoto Y, Tanaka H, Itaya A, Bull. Chem. Soc. Jpn., 58, 2023 (1985)
Okomoto K, Yamamoto Y, Tanaka H, Itaya A, Bill. Chem. Soc. Jpn., 58, 2015 (1985)
Augugliaro V, Palmisano L, Sclafani A, Tox. Environ. Chem., 16, 89 (1988)
Trillas M, Pujol M, Domenech X, J. Chem. Technol. Biotechnol., 55, 85 (1992)
Kaneko M, Okuru N, Photocatalysis: Science and technology, Kodansha Ltd, Japan. 356 (2002)
Gogate PR, Pandit AB, Adv. Environ. Res., 8, 501 (2004)
Wu CH, Chemosphere, 57, 601 (2004)
Rivera AP, Tanaka K, Hisanaga T, Appl. Catal. B: Environ., 3(1), 37 (1993)
Pelizzetti E, Minero C, Electrochim. Acta, 38, 47 (1993)
Chen PH, Jeng CH, Water. Sup., 13, 29 (1995)
Ye XS, Sha J, Jiao ZK, Zhang LD, Nanostruct. Mater., 8, 919 (1997)
Sun B, Smirniotis PG, Catal. Today, 88(1-2), 49 (2003)
Weng T, Photocatalytic purification and treatment of water and air, Elsevier Publishers, Amsterdam (1993)
Smyth JR, Bish DL, Crystal structures and cation sites of the rock-forming minerals, Allen & Unwin, London (1988)
Bickley RI, Gonzalez-Carreno T, Lees JS, Palmisano L, Tilley RJD, J. Solid State Chem., 92, 178 (1991)
Reeves P, Ohlhausen R, Sloan D, Scoggins KT, Clark C, Hutchinson B, Green D, Sol. Energy, 48, 413 (1992)
Bacsa RR, Kiwi J, Appl. Catal. B: Environ., 16(1), 19 (1998)
Yamazaki S, Matsunaga S, Hori K, Water Res., 35, 1022 (2001)
Xu NP, Shi ZF, Fan YQ, Dong JH, Shi J, Hu MZC, Ind. Eng. Chem. Res., 38(2), 373 (1999)
Legrini O, Oliveros E, Braun AM, Chem. Rev., 93, 671 (1993)
Hoffmann MR, Martin ST, Choi W, Behnemann DW, Chem. Rev., 93, 69 (1995)
Alfano OM, Bahnemann D, Cassano AE, Dillert R, Goslich R, Catal. Today, 58(2-3), 199 (2000)
Matthews RW, McEvoy SR, J. Photochem. Photobiol. A-Chem., 64, 231 (1992)
Puma GL, Yue PL, Ind. Eng. Chem. Res., 38(9), 3238 (1999)
Demeestere K, Dewulf J, De Witte B, Van Langenhove H, Appl. Catal. B: Environ., 60(1-2), 93 (2005)
Tod AK, Catal., 44, 357 (1998)
Ray AK, Beenackers AACM, AIChE J., 44(2), 477 (1998)
Paquet DA, Ray WH, AIChE J., 40(1), 73 (1994)
Tang C, Chen V, Water Res., 38, 2775 (2004)
Shon H, Ultrafiltration and nanofiltration hybrid systems in wastewater treatment and reuse, PhD Dissertation. UTS (2005)
Haarstrick A, Kut OM, Heinzle E, Environ. Sci. Technol., 30, 817 (1996)
Thiruvenkatachari R, Kwon TO, Moon IS, Sep. Sci. Technol., 40(14), 2871 (2005)
Yue PL, Water Sci. Technol., 35, 189 (1997)
Lee JC, Kim MS, Kim CK, Chung CH, Cho SM, Han GY, Yoon KJ, Kim BW, Korean J. Chem. Eng., 20(5), 862 (2003)
Na YS, Kim DH, Lee CH, Lee SW, Park YS, Oh YK, Park SH, Song SK, Korean J. Chem. Eng., 21(2), 430 (2004)
Turchi CS. Klausner JF, Marchand E, Field test results for the solar photocatalysis detoxification of fuel-contaminated groundwater, Chemical Oxidation: Technology for the Nineties, 3rd International Symposium (1993)
Dillert R, Vollmer S, Schober M, Theurich J, Bahnemann D, Arntz HJ, Pahlmann K, Wienefeld J, Schmedding T, Sager G, Chem. Eng. Technol., 22(11), 931 (1999)
Arslan I, Balcioglu IA, Bahnemann DW, Water Sci. Technol., 44, 171 (2001)
Goswami DY, J. Sol. Energy Eng.-Trans. ASME, 119, 101 (1997)
Freudenhammer H, Bahnemann D, Bousselmi L, Geissen SU, Ghrabi A, Saleh F, Si-Salah A, Siemon U, Vogelpohl A, Water Sci. Technol., 35, 149 (1997)
Guillard C, Lachheb H, Houas A, Ksibi M, Elaloui E, Herrmann JM, J. Photochem. Photobiol. A-Chem., 158, 27 (2003)
Anderson MA, Tunesi S, Xu Q, US patent 5035784 (1991)
Cooper GA, US Patent 4888101 (1989)
Oonada J, JP Patent 06071256 (1994)
Bideau M, Claudel B, Dubien C, Faure L, Karzouan H, J. Photochem. Photobiol. A-Chem., 91, 137 (1995)
Braun AM, In photochemical conversion and storage of solar energy, 8th International Conference on Photochemical Conversion and Storage of Solar Energy, Palermo, Italy (1990)
Hofstadler K, Bauer R, Novalic S, Heisler G, Environ. Sci. Technol., 28, 670 (1994)
Arana J, Melian JAH, Rodriguez JMD, Diaz OG, Viera A, Pena JP, Sosa PMM, Jimenez VE, Catal. Today, 76(2-4), 279 (2002)
Arana J, Dona-Rodriguez JM, Rendon ET, Cabo CGI, Gonzalez-Diaz O, Herrera-Melian JA, Perez-Pena J, Colon G, Navio JA, Appl. Catal. B: Environ., 44(2), 161 (2003)
Xi W, Geissen SU, Water Res., 35, 1256 (2001)
Molinari R, Mungari M, Drioli E, Di Paola A, Loddo V, Palmisano L, Schiavello M, Catal. Today, 55(1-2), 71 (2000)
Molinari R, Palmisano L, Drioli E, Schiavello M, J. Membr. Sci., 206(1-2), 399 (2002)
Molinari R, Pirillo F, Falco M, Loddo V, Palmisano L, Chem. Eng. Process., 43(9), 1103 (2004)
Thiruvenkatachari R, Kwon TO, Moon IS, Korean J. Chem. Eng., 22(6), 938 (2005)
Kagaya S, Shimizu K, Arai R, Hasegawa K, Water Res., 33, 1753 (1999)
Sopajaree K, Qasim SA, Basak S, Rajeshwar K, J. Appl. Electrochem., 29(5), 533 (1999)
Sopajaree K, Qasim SA, Basak S, Rajeshwar K, J. Appl. Electrochem., 29(9), 1111 (1999)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로