Overall
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 3, 2022
Revised September 14, 2022
Accepted January 31, 2023
- Acknowledgements
- The authors are grateful for the funding granted from the Ministry of Science and Technology, and technical support from the National Center for High-Performance Computing, Taiwan. The authors gratefully acknowledge the use of SQUID000200 of MOST111-2731-M-006-001 belonging to the Core Facility Center of National Cheng Kung University
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Downloaded
Catalytic hydrogenation of disinfection by-product bromate by cobalt and nickle prussian blue analogues with borohydride
Abstract
As disinfection is employed extensively, disinfection by-product bromate has become an emerging environmental issue due to its carcinogenic toxicity. For developing an effective alternative approach for reducing bromate,
cobalt and nickel-based Prussian Blue (PB) analogues are proposed here for incorporating a convenient reducing agent,
NaBH4 (i.e., a H2-rich reagent) for reducing bromate to bromide as cobalt and nickel are recognized as effective metals
for catalyzing hydrolysis of NaBH4, and PB exhibits versatile catalytic activity. While CoPB and NiPB are comprised of
the same crystalline structure, CoPB exhibits slightly higher specific surface area, more reductive surface, and more
superior electron transfer than NiPB, enabling CoPB to accelerate bromate reduction. CoPB also exhibits a higher
affinity towards NaBH4 than NiPB based on density functional theory calculations. Moreover, CoPB also exhibits a relatively low activation energy (i.e., 59.5 kJ/mol) of bromate reduction than NiPB (i.e., 63.2 kJ/mol). Furthermore, bromate reduction by CoPB and NiPB could be also considerably enhanced under acidic conditions, and CoPB and NiPB
could still effectively remove bromate even in the presence of nitrate, sulfate and phosphate. CoPB and NiPB are also
validated to be recyclable for reducing bromate, indicating that CoPB and NiPB are promising heterogeneous catalysts
for reducing bromate.
References
2. P. Deeudomwongsa, S. Phattarapattamawong and K. Y. A. Lin, Chemosphere, 184, 1215 (2017).
3. I. A. Ike, Y. Lee and J. Hur, Chem. Eng. J., 375, 121929 (2019).
4. M. R. Khan, Z. A. Alothman, N. J. Alqahtani, I. H. Alsohaimi and M. Naushad, Anal. Methods, 6, 4038 (2014)
5. U. Pinkernell and U. von Gunten, Environ. Sci. Technol., 35, 2525 (2001).
6. K. Liu, J. Lu and Y. Ji, Water Res., 84, 1 (2015).
7. Z. Li, Z. Chen, Y. Xiang, L. Ling, J. Fang, C. Shang and D. D. Dionysiou, Water Res., 83, 132 (2015).
8. J. A. Wiśniewski and M. Kabsch-Korbutowicz, Desalination, 261, 197 (2010).
9. A. Bhatnagar, Y. Choi, Y. Yoon, Y. Shin, B.-H. Jeon and J.-W. Kang, J. Hazard. Mater., 170, 134 (2009).
10. K. Listiarini, J. T. Tor, D. D. Sun and J. O. Leckie, J. Membr. Sci., 365, 154 (2010).
11. M. Naushad, Z. A. ALOthman, M. R. Khan and S. M. Wabaidur, Clean, 41, 528 (2013).
12. M. Naushad, M. R. Khan, Z. A. Alothman and M. R. Awual, Desalination Water Treat., 57, 5781 (2016).
13. M. Naushad, P. Senthil Kumar and S. Suganya, Bromate formation in drinking water and its control using graphene based materials, in: M. Naushad (Ed.) A New Generation Material Graphene: Applications in Water Technology, Springer International Publishing,Cham, 239 (2019).
14. A. Sharma, G. Sharma, M. Naushad and D. Pathania, J. Chil. Chem.Soc., 61, 2940 (2016).
15. M. Naushad, M. R. Khan, Z. A. Alothman, I. AlSohaimi, F. Rodriguez-Reinoso, T. M. Turki and R. Ali, Environ. Sci. Pollut. Res. Int.,22, 15853 (2015).
16. K.-Y. A. Lin and C.-H. Lin, Chem. Eng. J., 297, 19 (2016).
17. K.-Y. A. Lin and C.-H. Lin, Chem. Eng. J., 325, 144 (2017).
18. K.-Y. A. Lin, C.-H. Lin and J.-Y. Lin, J. Colloid Interface Sci., 504,397 (2017).
19. K.-Y. A. Lin, J.-Y. Lin and H.-L. Lien, Chemosphere, 172, 325 (2017).
20. Y.-T. Chiu, P.-Y. Lee, T. Wi-Afedzi, J. Lee and K.-Y. A. Lin, J. Colloid Interface Sci., 532, 416 (2018).
21. S. Kliber and J. A. Wiśniewski, Desalination Water Treat., 35, 158 (2011).
22. M. Moslemi, S. H. Davies and S. J. Masten, Environ. Eng. Sci., 29, 1092 (2012).
23. Z. Lu, Q. Yang, T. Hu, J. Wang and W. Tang, Chem. Eng. J., 446, 137356 (2022).
24. S. Tang, J. Yao, H. Liu and Y. Zhang, J. Environ. Chem. Eng., 10, 107099 (2022).
25. J. Restivo, O. S. G. P. Soares, J. J. M. Órfão and M. F. R. Pereira, Chem.Eng. J., 263, 119 (2015).
26. P. Zhang, F. Jiang and H. Chen, Chem. Eng. J., 234, 195 (2013).
27. K.-Y. A. Lin, C.-H. Lin, S.-Y. Chen and H. Yang, Chem. Eng. J., 303,596 (2016).
28. K.-Y. A. Lin, C.-H. Lin and H. Yang, J. Environ. Chem. Eng., 5, 5085 (2017).
29. B.-C. Li, H. Yang, E. Kwon, D. Dinh Tuan, T. Cong Khiem, G. Lisak, B. Xuan Thanh, F. Ghanbari and K.-Y. Andrew Lin, Sep. Purif. Technol., 119320 (2021).
30. N. Nurlan, A. Akmanova and W. Lee, Nanomaterials, 12, 1212 (2022).
31. Z. Dong, F. Sun, W. Dong and C. Jiang, Environ. Eng. Sci., 35, 176 (2018).
32. Z. Dong, W. Dong, F. Sun, R. Zhu and F. Ouyang, React. Kinet., Mech. Catal., 107, 231 (2012).
33. M. Li, X. Zhou, J. Sun, H. Fu, X. Qu, Z. Xu and S. Zheng, Sci. Total Environ., 663, 673 (2019).
34. Y.-T. Chiu, H. Wang, J. Lee and K.-Y. A. Lin, Process Saf. Environ. Prot., 127, 36 (2019).
35. L. H. Rude, T. K. Nielsen, D. B. Ravnsbæk, U. Bösenberg, M. B. Ley, B. Richter, L. M. Arnbjerg, M. Dornheim, Y. Filinchuk, F. Besenbacher and T. R. Jensen, Phys. Status Solidi (a), 208, 1754 (2011).
36. R. Peña-Alonso, A. Sicurelli, E. Callone, G. Carturan and R. Raj, J. Power Sources, 165, 315 (2007).
37. Y. S. Wei, W. Meng, Y. Wang, Y. X. Gao, K. Z. Qi and K. Zhang,Int. J. Hydrogen Energy, 42, 6072 (2017).
38. F. Li, Q. Li and H. Kim, Chem. Eng. J., 210, 316 (2012).
39. G. R. M. Tomboc, A. H. Tamboli and H. Kim, Energy, 121, 238 (2017).
40. Y. V. Larichev, O. V. Netskina, O. V. Komova and V. I. Simagina, Int. J. Hydrogen Energy, 35, 6501 (2010).
41. D. D. Tuan and K. Y. A. Lin, Chem. Eng. J., 351, 48 (2018).
42. D. D. Tuan, C.-W. Huang, X. Duan, C.-H. Lin and K.-Y. A. Lin, Int. J. Hydrogen Energy, 45, 31952 (2020).
43. D. D. Tuan and K.-Y. A. Lin, J. Taiwan Inst. Chem. Eng., 91, 274 (2018).
44. D. D. Tuan, E. Kwon, J.-Y. Lin, X. Duan, Y.-F. Lin and K.-Y. A. Lin, Chem. Papers, 75, 779 (2021).
45. N. Nurlan, A. Akmanova, S. Han and W. Lee, Chem. Eng. J., 414, 128860 (2021).
46. Y. Chen, W. Yang, S. Gao, Y. Gao, C. Sun and Q. Li, Sep. Purif. Technol., 251, 117353 (2020).
47. Q. Xiao and S. Yu, J. Hazard. Mater., 418, 125940 (2021).
48. Y. You, H. Yuan, Y. Wu, Y. Ma, C. Meng and X. Zhao, Sep. Purif. Technol., 264, 118456 (2021).
49. J. Li, L. He, J. Jiang, Z. Xu, M. Liu, X. Liu, H. Tong, Z. Liu and D.Qian, Electrochim. Acta, 353, 136579 (2020).
50. D. D. Tuan and K.-Y. A. Lin, Chem. Eng. J., 351, 48 (2018).
51. D. D. Tuan, H. Yang, N. N. Huy, E. Kwon, T. C. Khiem, S. You, J. Lee and K.-Y. A. Lin, J. Environ. Chem. Eng., 9, 105809 (2021).
52. K.-Y.A. Lin and S.-Y. Chen, ACS Sustain. Chem. Eng., 3, 3096 (2015).
53. K. Y. A. Lin, J. Y. Lin and H. L. Lien, Chemosphere, 172, 325 (2017).
54. K. Y. A. Lin and C. H. Lin, Chem. Eng. J., 325, 144 (2017).
55. C. Wu, F. Wu, Y. Bai, B. L. Yi and H. M. Zhang, Mater. Lett., 59, 1748 (2005).
56. R. Krishna, D.M. Fernandes, C. Dias, J. Ventura, E. Venkata Ramana,
C. Freire and E. Titus, Int. J. Hydrogen Energy, 40, 4996 (2015).
57. P. Brack, S. E. Dann and K. G. U. Wijayantha, Energy Sci. Eng., 3, 174 (2015).
58. J. C. Walter, A. Zurawski, D. Montgomery, M. Thornburg and S. Revankar, J. Power Sources, 179, 335 (2008).
59. T. Wi-Afedzi, E. Kwon, D. D. Tuan, K.-Y. A. Lin and F. Ghanbari, Sci. Total Environ., 703, 134781 (2020).
60. T. Wi-Afedzi, F.-Y. Yeoh, M.-T. Yang, A. C. K. Yip and K.-Y. A. Lin, Sep. Purif. Technol., 218, 138 (2019).
61. C.-H. Liu, B.-H. Chen, C.-L. Hsueh, J.-R. Ku, M.-S. Jeng and F. Tsau, Int. J. Hydrogen Energy, 34, 2153 (2009).
62. L. Ai, X. Liu and J. Jiang, J. Alloys Compd., 625, 164 (2015).
63. B. Cui, G. Wu, S. Qiu, Y. Zou, E. Yan, F. Xu, L. Sun and H. Chu, Adv. Sustain. Syst., 5, 2100209 (2021).
64. T. Ohno, Analyst, 114, 857 (1989).
65. A.W.W.A.W.E.F. American Public Health Association, Standard Methods for the Examination of Water and Wastewater 22 nd ed., Method 4500-CN- A,B,C,D and E, in, Washington, DC, USA, 4 (2012).