ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Overall

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 3, 2022
Revised September 14, 2022
Accepted January 31, 2023
Acknowledgements
The authors are grateful for the funding granted from the Ministry of Science and Technology, and technical support from the National Center for High-Performance Computing, Taiwan. The authors gratefully acknowledge the use of SQUID000200 of MOST111-2731-M-006-001 belonging to the Core Facility Center of National Cheng Kung University
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Downloaded

Catalytic hydrogenation of disinfection by-product bromate by cobalt and nickle prussian blue analogues with borohydride

1Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan 2School of Environmental Engineering, University of Seoul, Seoul 02504, Korea 3Department of Chemical Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Rd., Chungli, Taoyuan, Taiwan 4Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, 700000, Viet Nam 5International School, Thai Nguyen University, Thai Nguyen city, 250000, Viet Nam 6Environment Research Center and Department of Environmental Health Engineering Isfahan University of Medical Sciences Isfahan, Iran 7Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore 8School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore 9Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University, Sriracha Campus, Chonburi, Thailand
yflin@cycu.edu.tw, linky@nchu.edu.tw
Korean Journal of Chemical Engineering, December 2023, 40(12), 2876-2885(10), 10.1007/s11814-023-1445-8
downloadDownload PDF

Abstract

As disinfection is employed extensively, disinfection by-product bromate has become an emerging environmental issue due to its carcinogenic toxicity. For developing an effective alternative approach for reducing bromate, cobalt and nickel-based Prussian Blue (PB) analogues are proposed here for incorporating a convenient reducing agent, NaBH4 (i.e., a H2-rich reagent) for reducing bromate to bromide as cobalt and nickel are recognized as effective metals for catalyzing hydrolysis of NaBH4, and PB exhibits versatile catalytic activity. While CoPB and NiPB are comprised of the same crystalline structure, CoPB exhibits slightly higher specific surface area, more reductive surface, and more superior electron transfer than NiPB, enabling CoPB to accelerate bromate reduction. CoPB also exhibits a higher affinity towards NaBH4 than NiPB based on density functional theory calculations. Moreover, CoPB also exhibits a relatively low activation energy (i.e., 59.5 kJ/mol) of bromate reduction than NiPB (i.e., 63.2 kJ/mol). Furthermore, bromate reduction by CoPB and NiPB could be also considerably enhanced under acidic conditions, and CoPB and NiPB could still effectively remove bromate even in the presence of nitrate, sulfate and phosphate. CoPB and NiPB are also validated to be recyclable for reducing bromate, indicating that CoPB and NiPB are promising heterogeneous catalysts for reducing bromate.

References

1. A. Chin and P. R. Bérubé, Water Res., 39, 2136 (2005).
2. P. Deeudomwongsa, S. Phattarapattamawong and K. Y. A. Lin, Chemosphere, 184, 1215 (2017).
3. I. A. Ike, Y. Lee and J. Hur, Chem. Eng. J., 375, 121929 (2019).
4. M. R. Khan, Z. A. Alothman, N. J. Alqahtani, I. H. Alsohaimi and M. Naushad, Anal. Methods, 6, 4038 (2014)
5. U. Pinkernell and U. von Gunten, Environ. Sci. Technol., 35, 2525 (2001).
6. K. Liu, J. Lu and Y. Ji, Water Res., 84, 1 (2015).
7. Z. Li, Z. Chen, Y. Xiang, L. Ling, J. Fang, C. Shang and D. D. Dionysiou, Water Res., 83, 132 (2015).
8. J. A. Wiśniewski and M. Kabsch-Korbutowicz, Desalination, 261, 197 (2010).
9. A. Bhatnagar, Y. Choi, Y. Yoon, Y. Shin, B.-H. Jeon and J.-W. Kang, J. Hazard. Mater., 170, 134 (2009).
10. K. Listiarini, J. T. Tor, D. D. Sun and J. O. Leckie, J. Membr. Sci., 365, 154 (2010).
11. M. Naushad, Z. A. ALOthman, M. R. Khan and S. M. Wabaidur, Clean, 41, 528 (2013).
12. M. Naushad, M. R. Khan, Z. A. Alothman and M. R. Awual, Desalination Water Treat., 57, 5781 (2016).
13. M. Naushad, P. Senthil Kumar and S. Suganya, Bromate formation in drinking water and its control using graphene based materials, in: M. Naushad (Ed.) A New Generation Material Graphene: Applications in Water Technology, Springer International Publishing,Cham, 239 (2019).
14. A. Sharma, G. Sharma, M. Naushad and D. Pathania, J. Chil. Chem.Soc., 61, 2940 (2016).
15. M. Naushad, M. R. Khan, Z. A. Alothman, I. AlSohaimi, F. Rodriguez-Reinoso, T. M. Turki and R. Ali, Environ. Sci. Pollut. Res. Int.,22, 15853 (2015).
16. K.-Y. A. Lin and C.-H. Lin, Chem. Eng. J., 297, 19 (2016).
17. K.-Y. A. Lin and C.-H. Lin, Chem. Eng. J., 325, 144 (2017).
18. K.-Y. A. Lin, C.-H. Lin and J.-Y. Lin, J. Colloid Interface Sci., 504,397 (2017).
19. K.-Y. A. Lin, J.-Y. Lin and H.-L. Lien, Chemosphere, 172, 325 (2017).
20. Y.-T. Chiu, P.-Y. Lee, T. Wi-Afedzi, J. Lee and K.-Y. A. Lin, J. Colloid Interface Sci., 532, 416 (2018).
21. S. Kliber and J. A. Wiśniewski, Desalination Water Treat., 35, 158 (2011).
22. M. Moslemi, S. H. Davies and S. J. Masten, Environ. Eng. Sci., 29, 1092 (2012).
23. Z. Lu, Q. Yang, T. Hu, J. Wang and W. Tang, Chem. Eng. J., 446, 137356 (2022).
24. S. Tang, J. Yao, H. Liu and Y. Zhang, J. Environ. Chem. Eng., 10, 107099 (2022).
25. J. Restivo, O. S. G. P. Soares, J. J. M. Órfão and M. F. R. Pereira, Chem.Eng. J., 263, 119 (2015).
26. P. Zhang, F. Jiang and H. Chen, Chem. Eng. J., 234, 195 (2013).
27. K.-Y. A. Lin, C.-H. Lin, S.-Y. Chen and H. Yang, Chem. Eng. J., 303,596 (2016).
28. K.-Y. A. Lin, C.-H. Lin and H. Yang, J. Environ. Chem. Eng., 5, 5085 (2017).
29. B.-C. Li, H. Yang, E. Kwon, D. Dinh Tuan, T. Cong Khiem, G. Lisak, B. Xuan Thanh, F. Ghanbari and K.-Y. Andrew Lin, Sep. Purif. Technol., 119320 (2021).
30. N. Nurlan, A. Akmanova and W. Lee, Nanomaterials, 12, 1212 (2022).
31. Z. Dong, F. Sun, W. Dong and C. Jiang, Environ. Eng. Sci., 35, 176 (2018).
32. Z. Dong, W. Dong, F. Sun, R. Zhu and F. Ouyang, React. Kinet., Mech. Catal., 107, 231 (2012).
33. M. Li, X. Zhou, J. Sun, H. Fu, X. Qu, Z. Xu and S. Zheng, Sci. Total Environ., 663, 673 (2019).
34. Y.-T. Chiu, H. Wang, J. Lee and K.-Y. A. Lin, Process Saf. Environ. Prot., 127, 36 (2019).
35. L. H. Rude, T. K. Nielsen, D. B. Ravnsbæk, U. Bösenberg, M. B. Ley, B. Richter, L. M. Arnbjerg, M. Dornheim, Y. Filinchuk, F. Besenbacher and T. R. Jensen, Phys. Status Solidi (a), 208, 1754 (2011).
36. R. Peña-Alonso, A. Sicurelli, E. Callone, G. Carturan and R. Raj, J. Power Sources, 165, 315 (2007).
37. Y. S. Wei, W. Meng, Y. Wang, Y. X. Gao, K. Z. Qi and K. Zhang,Int. J. Hydrogen Energy, 42, 6072 (2017).
38. F. Li, Q. Li and H. Kim, Chem. Eng. J., 210, 316 (2012).
39. G. R. M. Tomboc, A. H. Tamboli and H. Kim, Energy, 121, 238 (2017).
40. Y. V. Larichev, O. V. Netskina, O. V. Komova and V. I. Simagina, Int. J. Hydrogen Energy, 35, 6501 (2010).
41. D. D. Tuan and K. Y. A. Lin, Chem. Eng. J., 351, 48 (2018).
42. D. D. Tuan, C.-W. Huang, X. Duan, C.-H. Lin and K.-Y. A. Lin, Int. J. Hydrogen Energy, 45, 31952 (2020).
43. D. D. Tuan and K.-Y. A. Lin, J. Taiwan Inst. Chem. Eng., 91, 274 (2018).
44. D. D. Tuan, E. Kwon, J.-Y. Lin, X. Duan, Y.-F. Lin and K.-Y. A. Lin, Chem. Papers, 75, 779 (2021).
45. N. Nurlan, A. Akmanova, S. Han and W. Lee, Chem. Eng. J., 414, 128860 (2021).
46. Y. Chen, W. Yang, S. Gao, Y. Gao, C. Sun and Q. Li, Sep. Purif. Technol., 251, 117353 (2020).
47. Q. Xiao and S. Yu, J. Hazard. Mater., 418, 125940 (2021).
48. Y. You, H. Yuan, Y. Wu, Y. Ma, C. Meng and X. Zhao, Sep. Purif. Technol., 264, 118456 (2021).
49. J. Li, L. He, J. Jiang, Z. Xu, M. Liu, X. Liu, H. Tong, Z. Liu and D.Qian, Electrochim. Acta, 353, 136579 (2020).
50. D. D. Tuan and K.-Y. A. Lin, Chem. Eng. J., 351, 48 (2018).
51. D. D. Tuan, H. Yang, N. N. Huy, E. Kwon, T. C. Khiem, S. You, J. Lee and K.-Y. A. Lin, J. Environ. Chem. Eng., 9, 105809 (2021).
52. K.-Y.A. Lin and S.-Y. Chen, ACS Sustain. Chem. Eng., 3, 3096 (2015).
53. K. Y. A. Lin, J. Y. Lin and H. L. Lien, Chemosphere, 172, 325 (2017).
54. K. Y. A. Lin and C. H. Lin, Chem. Eng. J., 325, 144 (2017).
55. C. Wu, F. Wu, Y. Bai, B. L. Yi and H. M. Zhang, Mater. Lett., 59, 1748 (2005).
56. R. Krishna, D.M. Fernandes, C. Dias, J. Ventura, E. Venkata Ramana,
C. Freire and E. Titus, Int. J. Hydrogen Energy, 40, 4996 (2015).
57. P. Brack, S. E. Dann and K. G. U. Wijayantha, Energy Sci. Eng., 3, 174 (2015).
58. J. C. Walter, A. Zurawski, D. Montgomery, M. Thornburg and S. Revankar, J. Power Sources, 179, 335 (2008).
59. T. Wi-Afedzi, E. Kwon, D. D. Tuan, K.-Y. A. Lin and F. Ghanbari, Sci. Total Environ., 703, 134781 (2020).
60. T. Wi-Afedzi, F.-Y. Yeoh, M.-T. Yang, A. C. K. Yip and K.-Y. A. Lin, Sep. Purif. Technol., 218, 138 (2019).
61. C.-H. Liu, B.-H. Chen, C.-L. Hsueh, J.-R. Ku, M.-S. Jeng and F. Tsau, Int. J. Hydrogen Energy, 34, 2153 (2009).
62. L. Ai, X. Liu and J. Jiang, J. Alloys Compd., 625, 164 (2015).
63. B. Cui, G. Wu, S. Qiu, Y. Zou, E. Yan, F. Xu, L. Sun and H. Chu, Adv. Sustain. Syst., 5, 2100209 (2021).
64. T. Ohno, Analyst, 114, 857 (1989).
65. A.W.W.A.W.E.F. American Public Health Association, Standard Methods for the Examination of Water and Wastewater 22 nd ed., Method 4500-CN- A,B,C,D and E, in, Washington, DC, USA, 4 (2012).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로