ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Overall

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 2, 2023
Revised April 13, 2023
Accepted May 1, 2023
Acknowledgements
This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant: 21CTAP-C157328- 02).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Downloaded

Enhanced photocatalytic activity of TiO2/Ca12Al14O33 in NO removal

1Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea 2Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea 3Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-ro, Ilsanseo-gu, Goyang-si, Gyeonggi-do 10223, Korea 4BENTECHFRONTIER Co., Ltd. 77 Yongbong-ro, Buk-gu Gwangju 61186, Korea
cosy32@cnu.ac.kr
Korean Journal of Chemical Engineering, December 2023, 40(12), 2906-2913(8), 10.1007/s11814-023-1485-0
downloadDownload PDF

Abstract

TiO2 supported on Ca12Al14O33 (Mayenite) was synthesized and investigated for use as a photocatalytic concrete material. TiO2/Mayenite (TiO2/M) catalysts were prepared with varying TiO2 loading amounts (1-20 wt%). The photocatalytic activity of the catalysts was measured using the ISO standard NO removal test. TiO2/M catalysts exhibited significantly enhanced photocatalytic activities compared to pure TiO2, with the NO removal efficiency increasing as TiO2 loading increased up to 10 wt% and then decreasing with further loading of TiO2. The NO removal rate of the TiO2/M catalyst, which contained 10 wt% TiO2, was 8.72 mol (equivalent to 350 mol/m2 ∙h). X-ray photoelectron spectroscopy (XPS) analysis suggested that oxygen on the TiO2/M catalysts with low TiO2 loading exists in the form of Ti-OH rather than TiO2. This study focuses on the formation of Ti-OH on the catalyst surface, which is promoted by the unique crystal structure of Mayenite that supplies oxygen ions and electrons to the TiO2 layer. The NO removal efficiency of the catalysts was found to be dependent on the interaction between TiO2 and Mayenite. Overall, this study demonstrates the potential of TiO2/Mayenite for use as a highly effective photocatalytic concrete material, with the unique properties of the Mayenite support playing a critical role in enhancing the photocatalytic activity of the catalyst

References

1. K. Skalska, J. S. Miller and S. Ledakowicz, Sci. Total Environ., 408,3976 (2010).
2. S. Roy, M. S. Hedge and G. Madras, Appl. Energy, 86, 2283 (2009).
3. V. Praveena and M. L. J. Martin, J. Energy Inst., 91, 704 (2018).
4. F. Liu, S. Beirle, Q. Zhang, R. J. van der A, B. Zheng, D. Tong and K. He, Atmos. Chem. Phys., 17, 9261 (2017).
5. J.H. Lee, C.F. Wu, G. Hoek, K. de Hoogh, R. Beelen, B. Brunekreef and C. C Chan, Sci. Total Environ., 472, 1163 (2014).
6. Y. J. Kim, H. J. Kwon, I. Heo, I. S. Nam, B. K. Cho, J. W. Choung, M. S. Cha and G. K. Yeo, Appl. Catal. B., 126, 9 (2012).
7. S. Hwang, Y. Kim, J. Lee, E. Lee, H. Lee, C. Jeong, C. H. Kim and D. H. Kim, Catal. Today, 384, 88 (2022).
8. J. Ângelo, L. Andrade, L. M. Madeira and A. Mendes, J. Environ.Manage., 129, 522 (2013).
9. W. Li, H. Yu, Z. Zhang, W. Hei, K. Liang and H. Yu, J. Hazard. Mater., 420, 126640 (2021).
10. C. Chitpakdee, A. Junkaew, P. Maitarad, L. Shi, V. Promarak, N.Kungwan and S. Namuangruk, Chem. Eng. J., 369, 124 (2019).
11. S. H. Seo, S. H. Jo, Y. S. Son, T. H. Kim, T. H. Kim and S. Yu, Chem.Eng. J., 387, 124083 (2020).
12. M. Chen and J. W. Chu, J. Clean. Prod., 19, 1266 (2011).
13. M. Z. Guo and C. S. Poon, Build Environ., 70, 102 (2013).
14. W. Shen, C. Zhang, Q. Li, W. Zhang, L. Cao and J. Ye, J. Clean. Prod.,87, 762 (2015).
15. J. H. Seo, H. N. Yoon, S. H. Kim, S. J. Bae, D. I. Jang, T. G. Kil, S. M.Park and H. K. Lee, Compos. Struct., 33, 68 (2020).
16. T. L. Thompson and J. T. Yates, Chem. Rev., 106, 4428 (2006).
17. K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna and G.Madras, Langmuir, 20, 2900 (2004).
18. E. V. Salomatina, D. G. Fukina, A. V. Koryagin, D. N. Titaev, E. V.Suleimanov and L. A. Smirnova, J. Environ. Chem. Eng., 9, 106078 (2021).
19. V. Tiwari, J. Jiang, V. Sethi and P. Biswas, Appl. Catal. A-Gen., 345,241 (2008).
20. F. Haque, E. Vaisman, C. H. Langford and A. Kantzas, J. Photochem.Photobiol. A., 169, 21 (2005).
21. G. P. Lepore, L. Persaud and C. H. Langford, J. Photochem. Photobiol. A., 98, 103 (1996).
22. S. Liu, M. Lim and R. Amal, Chem. Eng. Sci., 105, 46 (2014).
23. N. Taoufik, A. Elmchaouri, F. Anouar, S. A. Korili and A. Gilb, J.Water Process. Eng., 31, 100876 (2019).
24. D. Kanakaraju, J. Kockler, C. A. Motti, B. D. Glass and M. Oelgemöller, Appl. Catal. B., 166, 45 (2015).
25. A. Yousefi, A. Allahverdi and P. Hejazi, Constr. Build Mater., 41,224 (2013).
26. J. Li, L. Wang, C. Han, F. Su, Y. Leng and L. Ye, Chin. J. Chem. Eng.,
28, 2587 (2020).
27. M. P. Nicolás, J. Balbuena, M. C. Yusta, L. Sánchez, I. N. Blasco, J. M.Fernández and J. I. Alvarez, Cem. Concr. Res., 70, 67 (2015).
28. J. Yao, Y. Zhang, Y. Wang, M. Chen, Y. Huang, J. Cao and S. C. Lee,RSC Adv., 7, 24683 (2017).
29. H. Hosono, K. Hayashi, K. Kajihara, P. V. Sushko and A. L. Shluger,Solid State Ion., 180, 550 (2009).
30. J. N. Kim, C. H. Ko and K. B. Yi, Int. J. Hydrog. Energy, 38, 6072 (2013).
31. Z. S. Li, N. S. Cai, Y. Y. Huang and H. J. Han, Energy Fuels, 19, 1447 (2005).
32. J. H. Park, J. J. Park, H. J. Park and K. B. Yi, Clean Technol., 26, 304 (2020).
33. I. Rhee, J. S. Lee, J. B. Kim and J. H. Kim, Materials, 11, 877 (2018).
34. X. Tan, G. Qin, G. Cheng, X. Song, X. Chen, W. Dai and X. Fu, Catal. Sci. Technol., 20, 6923 (2020).
35. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara and K.Takeuchi, J. Mol. Catal. A. Chem., 161, 205 (2000).
36. H. Eskandarloo, A. Badiei and M. A. Behnajady, Ind. Eng. Chem.Res., 53, 7847 (2014).
37. R. Wang, H. Yang, Y. Lu, K. Kanamori, K. Nakanishi and X. Guo, ACS Omega, 2, 8148 (2017).
38. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, in Handbokk of X-ray photoelectron spectroscopy, J. Chastain Eds., PerkinElmer Corporation, Eden Prarie (1992).
39. J. S. Dalton, P. A. Janes, N. G. Jones, J. A. Nicholson, K. R. Hallam and G. C Allen, Environ. Pollut., 120, 415 (2002).
40. B. Ohtani, Y. Okugawa, S. Nishimoto and T. Kagiya, J. Phys. Chem.,91, 3550 (1987).
41. Y. Oosawa and M. Grätzel, J. Chem. Soc., Faraday Trans., 1, 197 (1988)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로