Overall
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 4, 2023
Revised August 23, 2023
Accepted September 2, 2023
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Downloaded
Adsorptive removal of congo red and methylene blue dyes from aqueous solutions by Rumex obtusifolius roots
Abstract
Rumex obtusifolius roots were utilized within the scope of zero waste. Sorption of methylene blue and
congo red dyes from wastewater was carried out. First, surface properties were determined using inverse gas chromatography. By this method, it was found that the surface of Rumex obtusifolius roots was acidic (KD/KA=0.13). The point
of zero charge value of Rumex obtusifolius roots was determined as 5.62. Based on these results and selectivity studies,
suitable dyes were selected for sorption studies. Experimental design was used for the first time to determine the parametric effects and to improve the process for the highest methylene blue and congo red removal. Optimum conditions
such as pH (2-12), concentration (10-50 mg/L), adsorbent amount (0.01 g/50 mL-0.30 g/50 mL), and contact time (0-
210 min) were determined for the adsorption process. The Langmuir-2 model provided the best correlation, and qm
values for methylene blue and congo red dyes were determined as 500.00 mg/g and 128.21 mg/g at 298 K. From the
kinetic studies, it was found that the sorption process for methylene blue and congo red dyes followed pseudo-secondorder kinetics. The effect of NaCl and CaCl2 salts on methylene blue and congo red sorption on Rumex obtusifolius
roots was evaluated. The adsorption process was found to be endothermic for methylene blue dye (Ho
=+19.33 kJ/
mol) and exothermic for congo red dye (Ho
=4.99 kJ/mol). The process was found to be spontaneous for both dyes
(Go
=28.10 kJ/mol for methylene blue dye and Go
=26.14 kJ/mol for congo red dye at 298 K). All findings showed the
potential of Rumex obtusifolius roots as a model adsorbent for the removal of various organic pollutants from wastewater
References
2. K. G. Akpomie and J. Conradie, Environ. Chem. Lett., 18, 1085 (2020).
3. D. Aksu Demirezen, D. Demirezen Yilmaz and Y. S. Yildiz, Int. J. Biol. Macromol., 239, 124311 (2023).
4. M. Akdemir, B. Isik, F. Cakar and O. Cankurtaran, Mater. Chem. Phys., 291, 126763 (2022).
5. M. Kasbaji, M. Mennani, N. Grimi, M. Oubenali, M. Mbarki, H.EL Zakhem and A. Moubarik, Int. J. Biol. Macromol., 239, 124288 (2023).
6. M. Mennani, M. Kasbaji, A. Ait Benhamou, A. Boussetta, A. A.Mekkaoui, N. Grimi and A. Moubarik, Green Chem., 25, 2896 (2023).
7. M. Radjai, H. Ferkous, Z. Jebali, H. Majdoub, R. Bourzami, G.Raffin, M. Achour, A. Gil and M. Boutahala, J. Mol. Liq., 361, 119670 (2022).
8. X. Huang, P. Hadi, R. Joshi, A. G. Alhamzani and B. S. Hsiao, ACS Omega., 8, 8634 (2023).
9. J. Abdi, M. Vossoughi, N. M. Mahmoodi and I. Alemzadeh, Chem.Eng. J., 326, 1145 (2017).
10. R. Elmoubarki, F. Z. Mahjoubi, H. Tounsadi, J. Moustadraf, M.Abdennouri, A. Zouhri, A. El Albani and N. Barka, Water Resour.Ind., 9, 16 (2015).
11. M. Loutfi, R. Mariouch, I. Mariouch, M. Belfaquir and M. S. ElYoubi, Mater. Today Proc., 72, 3638 (2023).
12. H. Ali and A. M. Ismail, J. Polym. Environ., 31, 976 (2023).
13. Y. Pi, C. Duan, Y. Zhou, S. Sun, Z. Yin, H. Zhang, C. Liu and Y.Zhao, J. Hazard. Mater., 424, 127577 (2022).
14. V. Vadivelan and K. V. Kumar, J. Colloid Interface Sci., 286, 90 (2005).
15. X. Wang, Q. Xu, L. Zhang, L. Pei, H. Xue and Z. Li, J. Environ.Chem. Eng., 11, 109206 (2023)
16. B. Isik, V. Ugraskan and O. Cankurtaran, Sep. Sci. Technol., 57, 854 (2021).
17. Z. Ahamad, M. Ahmed, F. Mashkoor and A. Nasar, Biomass Convers. Biorefin. (2023), https://doi.org/10.1007/s13399-023-04161-5.
18. I. Anastopoulos, A. Bhatnagar, B. H. Hameed, Y. S. Ok and M.Omirou, J. Mol. Liq., 240, 179 (2017).
19. S. Sonal, P. Prakash, B. K. Mishra and G. C. Nayak, RSC Adv., 10,13783 (2020).
20. R. Ramaraj, A. Shanmugam, B. Nagarathinam and M. Pandi, Biomass Convers. Biorefin. (2023), https://doi.org/10.1007/s13399-023-04148-2.
21. S. Sismanoglu, M.K. Akalin, G.O. Akalin and F. Topak, Bioresources,18, 3414 (2023).
22. M. C. Purohit, M. Singh, G. Kumar and N. Singh, Int. J. Pharm.Sci. Res., 11, 4524 (2020).
23. D. Harshaw, L. Nahar, B. Vadla, G. Saif-E-Naser and S. Sarker, Arch.Biol. Sci., 62, 387 (2010).
24. khalid S. Alshallash, Biologia, 76, 33 (2021).
25. B. Isik, S. Avci, F. Cakar and O. Cankurtaran, Environ. Sci. Pollut.Res., 30, 1333 (2023).
26. N. Cordeiro, C. Gouveia, A. G. O. Moraes and S. C. Amico, Carbohydr. Polym., 84, 110 (2011).
27. S. Bensalem, B. Hamdi, S. Del Confetto, M. Iguer-Ouada, A. Chamayou, H. Balard and R. Calvet, Colloids Surf. A Physicochem. Eng.Asp., 516, 336 (2017).
28. F. Cakar, H. Ocak, E. Ozturk, S. Mutlu-Yanic, D. Kaya, N. San, O.Cankurtaran, B. Bilgin-Eran and F. Karaman, Liq. Cryst., 41, 1323 (2014).
29. I. Erol, F. Cakar, H. Ocak, H. Cankurtaran, O. Cankurtaran, B. Bilgin-Eran and F. Karaman, Liq. Cryst., 43, 142 (2016).
30. H. Wang, L. Yang, Y. Qin, Z. Chen, T. Wang, W. Sun and C. Wang,Colloids Surf. A Physicochem. Eng. Asp., 656, 130290 (2023).
31. A. Mohrazi and R. Ghasemi-Fasaei, Environ. Monit. Assess., 195, 339 (2023).
32. S. C. Karadeniz, B. Isik, V. Ugraskan and F. Cakar, Phys. Chem. Earth, Parts A/B/C., 129, 103338 (2023).
33. Z. M. Senol, S. Cetinkaya and H. Arslanoglu, Biomass Convers.Bioref., 13, 2413 (2023).
34. K. S. W. Sing, Pure Appl. Chem., 57, 603 (1985).
35. Z. Wang, X. Jiang, M. Pan and Y. Shi, Minerals, 10, 377 (2020).
36. K. Jasri, A. S. Abdulhameed, A. H. Jawad, Z. A. ALOthman, T. A.Yousef and O. K. Al Duaij, Diam. Relat. Mater., 131, 109581 (2023).
37. R. Foroutan, S. J. Peighambardoust, P. Latifi, A. Ahmadi, M. Alizadeh and B. Ramavandi, J. Environ. Chem. Eng., 9, 106344 (2021).
38. K. Ito and J. E. Guillet, Macromolecules, 12, 1163 (1979).
39. A. U. Itodo, H. U. Itodo and M. K. Gafar, J. Appl. Sci. Environ. Manage., 14, 141 (2010).
40. M. Kasbaji, M. Mennani, A. Boussetta, N. Grimi, F. J. Barba, M.Mbarki and A. Moubarik, Sep. Sci. Technol., 58, 221 (2023).
41. A. Dbik, S. Bentahar, M. El Khomri, N. El Messaoudi and A. Lacherai, Mater. Today Proc., 22, 134 (2020).
42. P.K. Rose, R. Kumar, R. Kumar, M. Kumar and P. Sharma, Groundw.Sustain. Dev., 21, 100931 (2023).
43. A. H. Jawad, S. E. M. Saber, A. S. Abdulhameed, A. M. Farhan, Z. A. ALOthman and L. D. Wilson, J. King Saud. Univ. Sci., 35, 102630 (2023).
44. B. Isik, V. Ugraskan, F. Cakar and O. Yazici, Res. Chem. Intermed.,48, 4249 (2022).
45. B. Isik, F. Cakar, O. Cankurtaran and H. Cankurtaran, ChemistrySelect., 6, 6740 (2021).
46. A. Legras, A. Kondor, M. Alcock, M. T. Heitzmann and R. W. Truss,Cellulose, 24, 4691 (2017).
47. M. L. Palash, A. Pal, T. H. Rupam, B. D. Park and B. B. Saha, Colloids Surf. A Physicochem. Eng. Asp., 603, 125209 (2020).
48. A. C. Adiguzel, B. Korkmaz, F. Cakar, B. F. Senkal and O. Cankurtaran, Turk. J. Chem., 45, 1533 (2021).
49. H. Ocak, O. Yazici, B. Bilgin Eran, O. Cankurtaran and F. Karaman, Optoelectron. Adv. Mater. Rapid Commun., 2, 303 (2008).
50. V. Swaminathan, J. Cobb and I. Saracovan, Int. J. Pharm., 312, 158 (2006).
51. V. Ugraskan, B. Isik, O. Yazici and F. Cakar, Solid State Sci., 118,106636 (2021).
52. Y. Xu, J. Lin, J. Xia and B. Hu, Chin. J. Chromatogr., 29, 249 (2011).
53. V. Gutmann, The donor-acceptor approach to molecular interactions,Plenum, New York (1978).
54. K. Yadav, S. R. Latelwar, D. Datta and B. Jana, J. Ind. Chem. Soc.,100, 100974 (2023).
55. D. M. N. H. Jayasuriya and K. Nadarajah, Water Sci. Eng., 16, 154 (2023).
56. K. Akin, V. Ugraskan, B. Isik and F. Cakar, Int. J. Biol. Macromol., 223, 543 (2022).
57. M. A. Abdelaziz, M. E. Owda, R. E. Abouzeid, O. Alaysuy and El. I. Mohamed, Int. J. Biol. Macromol., 225, 1462 (2023).
58. P.K. Rose, R. Kumar, R. Kumar, M. Kumar and P. Sharma, Groundw. Sustain. Dev., 21, 100931 (2023).
59. M. Bilgi, V. Ugraskan and B. Isik, Chem. Eng. Commun., 210, 1405 (2022).
60. A. H. Jawad, R. A. Rashid, M. A. M. Ishak and K. Ismail, J. Taibah Univ. Sci., 12, 809 (2018).
61. A.H. Jawad, R. Razuan, J.N. Appaturi and L.D. Wilson, Surf. Interface, 16, 76 (2019).
62. H. Duran, S. Sismanoglu and T. Sismanoglu, J. Ind. Chem. Soc., 96, 1245 (2019).
63. Y. Tang, M. Li, C. Mu, J. Zhou and B. Shi, Chemosphere, 229, 570 (2019).
64. H. Munjur, N. Hasan, R. Awual, M. Islam, M. A. Shenashen and J. Iqbal, J. Mol. Liq., 319, 114356 (2020).
65. S. Joshi, V. K. Garg, N. Kataria and K. Kadirvelu, Chemosphere, 236, 124280 (2019).
66. S. Pandey, J. Y. Do, J. Kim and M. Kang, Int. J. Biol. Macromol., 143, 60 (2020).
67. E. Alver, A. U. Metin and F. Brouers, Int. J. Biol. Macromol., 154, 104 (2020).
68. Mu. Naushad, A. A. Alqadami, A. A. Al-Kahtani, T. Ahamad, R. Awual and T. Tatarchuk, J. Mol. Liq., 296, 112075 (2019).
69. W. Xiao, Z. N. Garba, S. Sun, I. Lawan, L. Wang, M. Lin and Z. Yuan, J. Clean. Prod., 253, 119989 (2020).
70. S. Sultana, K. Islam, A. Hasan, H. M. J. Khan, M. A. R. Khan, A. Deb, Al Raihan and W. Rahman, Environ. Nanotechnol. Monit. Manag., 17, 100651 (2022).
71. K. C. Nebaghe, Y. El Boundati, K. Ziat, A. Naji, L. Rghioui and M.Saidi, Fluid Phase Equilib., 430, 188 (2016).
72. R. Temiz, B. Isik, V. Ugraskan and O. Cankurtaran, Biomass Convers. Biorefin. (2022), https://doi.org/10.1007/s13399-022-03680-x.
73. S. Shakoor and A. Nasar, J. Taiwan Inst. Chem. Eng., 66, 154 (2016).
74. R. Ahmad Aftab, S. Zaidi, A. Aslam Parwaz Khan, M. Arish Usman, A. Y. Khan, M. Tariq Saeed Chani and A. M. Asiri, Alexandria Eng.J., 71, 355 (2023).
75. Z. Li, H. Hanafy, L. Zhang, L. Sellaoui, M. Schadeck Netto, M. L. S.Oliveira, M. K. Seliem, G. Luiz Dotto, A. Bonilla-Petriciolet and Q.Li, Chem. Eng. J., 388, 124263 (2020).
76. P. Ganguly, R. Sarkhel and P. Das, Surf. Interface, 20, 100616 (2020).
77. H. Freundlich, J. Phys. Chem., 57, 385 (1906).
78. A. Bukhari, T. Javed and M.N. Haider, J. Dispers. Sci. Technol., (2022).
79. S. Kaur, S. Rani and R. K. Mahajan, Desalin. Water Treat., 53, 1957 (2015).
80. S. Karakus, S. Sismanoglu, G. Akdut, O. Urk, E. Tan, T. Sismanoglu and A. Kilislioglu, J. Chem. Soc. Pak., 39, 17 (2017).
81. A. salah omer, G. A. El Naeem, A. I. Abd-Elhamid, O. O. M. Farahat, A. A. El-Bardan, H. M. A. Soliman and A. A. Nayl, J. Mater.Res. Technol., 19, 3241 (2022).
82. Z. M. Senol, S. Cetinkaya, A. F. Yenidunya, F. Basoglu-Unal and A.Ece, Int. J. Biol. Macromol., 199, 318 (2022).
83. A. M. Al-Ma’abreh, R. A. Abuassaf, D. A. Hmedat, M. Alkhabbas,G. Edris, S. H. Hussein-Al-Ali and S. Alawaideh, Int. J. Mol. Sci.,23, 11959 (2022).
84. M. Saxena, N. Sharma and R. Saxena, Surf. Interface, 21, 100639 (2020).
85. R. A. Fideles, G. M. D. Ferreira, F. S. Teodoro, O. F. H. Adarme,L. H. M. da Silva, L. F. Gil and L. V. A. Gurgel, J. Colloid Interface Sci., 515, 172 (2018).
86. Z. Wang, S. Bin Kang and S. W. Won, Colloids Surf. A Physicochem. Eng. Asp., 647, 128983 (2022).
87. E. C. Lima, A. Hosseini-Bandegharaei, J. C. Moreno-Piraján and I.Anastopoulos, J. Mol. Liq., 273, 425 (2019).
88. D. Ozdes, A. Gundogdu, C. Duran and H.B. Senturk, Sep. Sci. Technol., 45, 2076 (2010).
89. W. Qu, T. Yuan, G. Yin, S. Xu, Q. Zhang and H. Su, Fuel, 249, 45 (2019).