ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Overall

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 2, 2023
Revised September 8, 2023
Accepted September 22, 2023
Acknowledgements
This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Downloaded

Vanadium redox flow batteries including carbon catalysts derived from low-density polyethylene and polyurethane

1Department of New and Renewable Energy Convergence, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Korea 2Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Nowon-gu, Seoul, 01811, Korea
kwony@seoultech.ac.kr
Korean Journal of Chemical Engineering, December 2023, 40(12), 3087-3095(9), 10.1007/s11814-023-1576-y
downloadDownload PDF

Abstract

Utilizing waste plastic to produce carbon catalysts is one way to recycle waste plastic. Carbon catalysts derived from low-density polyethylene (LDPE) (LDPE-C catalyst) and polyurethane (PUK-C catalyst) can help to improve the performance of vanadium redox flow batteries (VRFBs). Especially, for forming the PUK-C catalyst that has abundant surface nitrogen functional groups and large surface area, carbonization process is needed. Electrochemical analysis discloses that when this PUK-C catalyst is doped onto graphite felt (GF), the reactivity for redox reactions of vanadium ions is significantly enhanced. Specifically, peak current density and peak potential separation for the redox reactions are more improved than those observed with bare GF. Additionally, charge transfer resistance for the redox reactions is reduced when using PUK-C catalyst doped GF. When the performance of VRFBs utilizing PUK-C catalyst doped GF is measured, they exhibit better energy efficiency than VRFBs operated without the catalyst by 8.1%. Furthermore, maximum power density of VRFBs utilizing PUK-C catalyst doped GF can generate 14.9% higher power at 30 mA cm2 than that of VRFBs utilizing bare felt. These findings demonstrate that the PUK-C catalyst is highly effective in enhancing the performance of VRFBs.

References

1. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P.Lemmon and J. Liu, Chem. Rev., 111, 3577 (2011).
2. H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li and Y. Ding, Prog. Nat.Sci., 19, 291 (2009).
3. G. Park, S. Eun, W. Lee, D. Henkensmeier and Y. Kwon, J. Power Sources, 569, 233015 (2023).
4. W. Lee, G. Park, D. Chang and Y. Kwon, Korean J. Chem. Eng., 37,2326 (2020).
5. C. Chu, B. W. Kwon, W. Lee and Y. Kwon, Korean J. Chem. Eng.,36, 1732 (2019).
6. H. Lim, M. Shin, C. Noh, E. Koo, Y. Kwon and K. Y. Chung, Korean J. Chem. Eng., 39, 3146 (2022).
7. M. Chen, P. Liu, Y. Li, Y. Hu, Z. Hu and Q. Wang, J. Therm. Anal.Calorim., 147, 4131 (2022).
8. W. Lee, G. Park, D. Schröder and Y. Kwon, Korean J. Chem. Eng.,38, 1 (2022).
9. K. Hyun, M. Shin and Y. Kwon, Korean J. Chem. Eng., 39, 3315 (2022).
10. J. Ji, C. Noh, M. Shin, S. Oh, Y. Chung, Y. Kwon and D.-H. Kim,Appl. Surf. Sci., 611, 155665 (2023).
11. H. An, C. Noh, S. Jeon, Y. Kwon and Y. Chung, J. Energy Storage,68, 107796 (2023).
12. S. Jeon, H. An, C. Noh, Y. Kwon and Y. Chung, Appl. Surf. Sci., 613,155962 (2023).
13. W. Lee, C. Jo, S. Youk, H. Y. Shin, J. Lee, Y. Chung and Y. Kwon,Appl. Surf. Sci., 429, 187 (2018).
14. C. Noh, B. W. Kwon, Y. Chung and Y. Kwon, J. Power Sources, 406,26 (2018).
15. C. Noh, C. S. Lee, W. S. Chi, Y. Chung, J. H. Kim and Y. Kwon, J.Electrochem. Soc., 165, A1388 (2018).
16. H. An, C. Noh, S. Jeon, M. Shin, Y. Kwon and Y. J. Chung, Int. J.Energy Res., 46, 11802 (2022).
17. Y. Chung, C. Noh and Y. Kwon, J. Power Sources, 438, 227063 (2019).
18. S. Oh, C. Noh, M. Shin and Y. Kwon, Int. J. Energy Res., 46, 8803 (2022).
19. Y.-R. Dong, Y. Kawagoe, K. Itou, H. Kaku, K. Hanafusa, K. Moriuchi and T. Shigematsu, ECS Trans., 75, 27 (2017).
20. P. K. Leung, C. Ponce-De-León, C. T. J. Low, A. A. Shah and F. C.Walsh, J. Power Sources, 196, 5174 (2011).
21. Q. Li, A. Bai, T. Zhang, S. Li and H. Sun, R. Soc. Open Sci., 7,200402 (2020).
22. V. Mahanta, M. Raja and R. Kothandaraman, Mater. Lett., 247, 63 (2019).
23. G. J. W. Radford, J. Cox, R. G. A. Wills and F. C. Walsh, J. Power Sources, 185, 1499 (2008).
24. H. M. Lee, K. H. An and B. J. Kim, Carbon Lett., 15, 146 (2014).
25. M. Ulaganathan, A. Jain, V. Aravindan, S. Jayaraman, W. C. Ling,
T.M. Lim, M.P. Srinivasan, Q. Yan and S. Madhavi, J. Power Sources, 274, 846 (2015).
26. Y. Lian, M. Ni, Z. Huang, R. Chen, L. Zhou, W. Utetiwabo and W. Yang, Chem. Eng. J., 366, 313 (2019).
27. H. Lim, M. Shin, C.-G. Phae and Y. Kwon, Chem. - An Asian J.,17, e202200754 (2022).
28. D. Choi, D. Jang, H. I. Joh, E. Reichmanis and S. Lee, Chem. Mater.,29, 9518 (2017).
29. X. Zhang, Z. Lin, C. Qin, X. Guo, Y. Ma and X. Jiang, J. Mater. Sci.Mater. Electron., 31, 715 (2020).
30. R. Wang, Z. Tan, W. Zhong, K. Liu, M. Li, Y. Chen, W. Wang and D. Wang, Compos. Commun., 22, 100426 (2020).
31. S. Xiao, S. Liu, J. Zhang and Y. Wang, J. Power Sources, 293, 119 (2015).
32. W. Li, K. Wang, Z. Li, C. Sun, S. Zhao, D. Zhang, K. Chen and A.Guo, New J. Chem., 46, 23328 (2022).
33. G. Nam, S. Choi, H. Byun, Y.-M. Rhym and S. E. Shim, Macromol.Res., 21, 958 (2013).
34. W. Chen, G. Zhang, D. Li, S. Ma, B. Wang and X. Jiang, Ind. Eng.Chem. Res., 59, 7447 (2020).
35. L. Shi, S. Liu, Z. He and J. Shen, Electrochim. Acta, 138, 93 (2014).
36. M. E. Lee, H.-J. Jin and Y. S. Yun, RSC Adv., 7, 43227 (2017).
37. J. Jin, X. Fu, Q. Liu, Y. Liu, Z. Wei, K. Niu and J. Zhang, ACS Nano,7, 4764 (2013).
38. M. Chen, P. Liu, Y. Li, Y. Hu, Z. Hu and Q. Wang, J. Therm. Anal.Calorim., 147, 4131 (2022).
39. L. Wang, F. Sun, F. Hao, Z. Qu, J. Gao, M. Liu, K. Wang, G. Zhao and Y. Qin, Chem. Eng. J., 383, 123205 (2020).
40. J. Hayashi, T. Horikawa, K. Muroyama and V. G. Gomes, Micropor. Mesopor. Mater., 55, 63 (2002).
41. M. Galhetas, A. S. Mestre, M. L. Pinto, I. Gulyurtlu, H. Lopes and A. P. Carvalho, J. Colloid Interface Sci., 433, 94 (2014).
42. I. I. Gurten, M. Ozmak, E. Yagmur and Z. Aktas, Biomass Bioenergy, 37, 73 (2012).
43. D. Adinata, W. M. A. Wan Daud and M. K. Aroua, Bioresour. Technol., 98, 145 (2007).
44. Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang and Y. Lin, J. Power Sources, 195, 4375 (2010).
45. X. Yan, T. Xu, G. Chen, S. Yang, H. Liu and Q. Xue, J. Phys. D Appl.Phys., 37, 1 (2004).
46. X. Zhang, Q. Fan, N. Qu, H. Yang, M. Wang, A. Liu and J. Yang,Nanoscale, 11, 8588 (2019).
47. M. Shin, C. Noh, Y. Chung, D. H. Kim and Y. Kwon, Appl. Surf.Sci., 550, 148977 (2021).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로