Overall
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 2, 2023
Revised September 8, 2023
Accepted September 22, 2023
- Acknowledgements
- This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Downloaded
Vanadium redox flow batteries including carbon catalysts derived from low-density polyethylene and polyurethane
Abstract
Utilizing waste plastic to produce carbon catalysts is one way to recycle waste plastic. Carbon catalysts
derived from low-density polyethylene (LDPE) (LDPE-C catalyst) and polyurethane (PUK-C catalyst) can help to
improve the performance of vanadium redox flow batteries (VRFBs). Especially, for forming the PUK-C catalyst that
has abundant surface nitrogen functional groups and large surface area, carbonization process is needed. Electrochemical analysis discloses that when this PUK-C catalyst is doped onto graphite felt (GF), the reactivity for redox reactions
of vanadium ions is significantly enhanced. Specifically, peak current density and peak potential separation for the
redox reactions are more improved than those observed with bare GF. Additionally, charge transfer resistance for the
redox reactions is reduced when using PUK-C catalyst doped GF. When the performance of VRFBs utilizing PUK-C
catalyst doped GF is measured, they exhibit better energy efficiency than VRFBs operated without the catalyst by 8.1%.
Furthermore, maximum power density of VRFBs utilizing PUK-C catalyst doped GF can generate 14.9% higher power
at 30 mA cm2
than that of VRFBs utilizing bare felt. These findings demonstrate that the PUK-C catalyst is highly
effective in enhancing the performance of VRFBs.
References
2. H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li and Y. Ding, Prog. Nat.Sci., 19, 291 (2009).
3. G. Park, S. Eun, W. Lee, D. Henkensmeier and Y. Kwon, J. Power Sources, 569, 233015 (2023).
4. W. Lee, G. Park, D. Chang and Y. Kwon, Korean J. Chem. Eng., 37,2326 (2020).
5. C. Chu, B. W. Kwon, W. Lee and Y. Kwon, Korean J. Chem. Eng.,36, 1732 (2019).
6. H. Lim, M. Shin, C. Noh, E. Koo, Y. Kwon and K. Y. Chung, Korean J. Chem. Eng., 39, 3146 (2022).
7. M. Chen, P. Liu, Y. Li, Y. Hu, Z. Hu and Q. Wang, J. Therm. Anal.Calorim., 147, 4131 (2022).
8. W. Lee, G. Park, D. Schröder and Y. Kwon, Korean J. Chem. Eng.,38, 1 (2022).
9. K. Hyun, M. Shin and Y. Kwon, Korean J. Chem. Eng., 39, 3315 (2022).
10. J. Ji, C. Noh, M. Shin, S. Oh, Y. Chung, Y. Kwon and D.-H. Kim,Appl. Surf. Sci., 611, 155665 (2023).
11. H. An, C. Noh, S. Jeon, Y. Kwon and Y. Chung, J. Energy Storage,68, 107796 (2023).
12. S. Jeon, H. An, C. Noh, Y. Kwon and Y. Chung, Appl. Surf. Sci., 613,155962 (2023).
13. W. Lee, C. Jo, S. Youk, H. Y. Shin, J. Lee, Y. Chung and Y. Kwon,Appl. Surf. Sci., 429, 187 (2018).
14. C. Noh, B. W. Kwon, Y. Chung and Y. Kwon, J. Power Sources, 406,26 (2018).
15. C. Noh, C. S. Lee, W. S. Chi, Y. Chung, J. H. Kim and Y. Kwon, J.Electrochem. Soc., 165, A1388 (2018).
16. H. An, C. Noh, S. Jeon, M. Shin, Y. Kwon and Y. J. Chung, Int. J.Energy Res., 46, 11802 (2022).
17. Y. Chung, C. Noh and Y. Kwon, J. Power Sources, 438, 227063 (2019).
18. S. Oh, C. Noh, M. Shin and Y. Kwon, Int. J. Energy Res., 46, 8803 (2022).
19. Y.-R. Dong, Y. Kawagoe, K. Itou, H. Kaku, K. Hanafusa, K. Moriuchi and T. Shigematsu, ECS Trans., 75, 27 (2017).
20. P. K. Leung, C. Ponce-De-León, C. T. J. Low, A. A. Shah and F. C.Walsh, J. Power Sources, 196, 5174 (2011).
21. Q. Li, A. Bai, T. Zhang, S. Li and H. Sun, R. Soc. Open Sci., 7,200402 (2020).
22. V. Mahanta, M. Raja and R. Kothandaraman, Mater. Lett., 247, 63 (2019).
23. G. J. W. Radford, J. Cox, R. G. A. Wills and F. C. Walsh, J. Power Sources, 185, 1499 (2008).
24. H. M. Lee, K. H. An and B. J. Kim, Carbon Lett., 15, 146 (2014).
25. M. Ulaganathan, A. Jain, V. Aravindan, S. Jayaraman, W. C. Ling,
T.M. Lim, M.P. Srinivasan, Q. Yan and S. Madhavi, J. Power Sources, 274, 846 (2015).
26. Y. Lian, M. Ni, Z. Huang, R. Chen, L. Zhou, W. Utetiwabo and W. Yang, Chem. Eng. J., 366, 313 (2019).
27. H. Lim, M. Shin, C.-G. Phae and Y. Kwon, Chem. - An Asian J.,17, e202200754 (2022).
28. D. Choi, D. Jang, H. I. Joh, E. Reichmanis and S. Lee, Chem. Mater.,29, 9518 (2017).
29. X. Zhang, Z. Lin, C. Qin, X. Guo, Y. Ma and X. Jiang, J. Mater. Sci.Mater. Electron., 31, 715 (2020).
30. R. Wang, Z. Tan, W. Zhong, K. Liu, M. Li, Y. Chen, W. Wang and D. Wang, Compos. Commun., 22, 100426 (2020).
31. S. Xiao, S. Liu, J. Zhang and Y. Wang, J. Power Sources, 293, 119 (2015).
32. W. Li, K. Wang, Z. Li, C. Sun, S. Zhao, D. Zhang, K. Chen and A.Guo, New J. Chem., 46, 23328 (2022).
33. G. Nam, S. Choi, H. Byun, Y.-M. Rhym and S. E. Shim, Macromol.Res., 21, 958 (2013).
34. W. Chen, G. Zhang, D. Li, S. Ma, B. Wang and X. Jiang, Ind. Eng.Chem. Res., 59, 7447 (2020).
35. L. Shi, S. Liu, Z. He and J. Shen, Electrochim. Acta, 138, 93 (2014).
36. M. E. Lee, H.-J. Jin and Y. S. Yun, RSC Adv., 7, 43227 (2017).
37. J. Jin, X. Fu, Q. Liu, Y. Liu, Z. Wei, K. Niu and J. Zhang, ACS Nano,7, 4764 (2013).
38. M. Chen, P. Liu, Y. Li, Y. Hu, Z. Hu and Q. Wang, J. Therm. Anal.Calorim., 147, 4131 (2022).
39. L. Wang, F. Sun, F. Hao, Z. Qu, J. Gao, M. Liu, K. Wang, G. Zhao and Y. Qin, Chem. Eng. J., 383, 123205 (2020).
40. J. Hayashi, T. Horikawa, K. Muroyama and V. G. Gomes, Micropor. Mesopor. Mater., 55, 63 (2002).
41. M. Galhetas, A. S. Mestre, M. L. Pinto, I. Gulyurtlu, H. Lopes and A. P. Carvalho, J. Colloid Interface Sci., 433, 94 (2014).
42. I. I. Gurten, M. Ozmak, E. Yagmur and Z. Aktas, Biomass Bioenergy, 37, 73 (2012).
43. D. Adinata, W. M. A. Wan Daud and M. K. Aroua, Bioresour. Technol., 98, 145 (2007).
44. Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang and Y. Lin, J. Power Sources, 195, 4375 (2010).
45. X. Yan, T. Xu, G. Chen, S. Yang, H. Liu and Q. Xue, J. Phys. D Appl.Phys., 37, 1 (2004).
46. X. Zhang, Q. Fan, N. Qu, H. Yang, M. Wang, A. Liu and J. Yang,Nanoscale, 11, 8588 (2019).
47. M. Shin, C. Noh, Y. Chung, D. H. Kim and Y. Kwon, Appl. Surf.Sci., 550, 148977 (2021).