Overall
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 23, 2023
Revised March 28, 2023
Accepted March 31, 2023
- Acknowledgements
- This paper was supported by Konkuk University Premier Research Fund in 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Read
Effects of adsorbent sampling variables on the accurate measurement of isoprene
Abstract
Isoprene is an important volatile organic compound causing photochemical smog in the atmosphere; thus,
accurate analysis of isoprene is essential. In this study, the effect of sampling conditions, including adsorbent types,
sampling temperatures, and flow rates on the recovery of isoprene, was investigated. Common adsorption traps of isoprene, including Tenax TA/Carbosieve SIII, Tenax TA/Carbotrap, were used as adsorbents. Sampling temperatures varied from 25 o
C to 40 o
C. Sampling flow rates were 50, 100, and 200 mL min1
. It was found that the Tenax/Carbotrap
trap revealed the highest isoprene recovery rate; however, the Tenax/Carbosieve SIII trap depicted more significant loss
of isoprene than the other one. As for sampling variables, the lower the temperatures and flow rates concerned were,
the higher the isoprene recovery was. It was concluded that sampling temperatures and flow rates should be 35 o
C
and 50 mL min1
during a sampling process, respectively. In addition, Carbosieve SIII should not be used for isoprene sampling due to its poor recovery rate
References
2. J. W. Ahn, T. V. Dinh, S. Y. Park, I. Y. Choi, C. R. Park and Y. S.Son, Atmos. Pollut. Res., 13, 101470 (2022).
3. K. Rumchev, H. Brown, and J. Spickett, Rev. Environ. Health, 22,39 (2007).
4. J. Kim, J. E. Lee, H. W. Lee, J. K. Jeon, J. H. Song, S. C. Jung, Y. F.Tsang and Y. K. Park, J. Hazard. Mater., 397, 122577 (2020).
5. P. A. Dominutti, J. R. Hopkins, M. Shaw, G. P. Mills, H. A. Le, D. H.Huy, G. L. Forster, S. Keita, T. T. Hien and D. E. Oram, Environ.Pollut., 318, 120927 (2023).
6. G. A. Novak and T. H. Bertram, Acc. Chem. Res., 53, 1014 (2020).
7. K. Na, Y. P. Kim, I. Moon and K. C. Moon, Chemosphere, 55, 585 (2004).
8. Q. Liang, X. Bao, Q. Sun, Q. Zhang, X. Zou, C. Huang, C. Shen and Y. Chu, Environ. Pollut., 265, 114628 (2020).
9. A. Kiendler-Scharr, J. Wildt, M. D. Maso, T. Hohaus, E. Kleist, T. F. Mentel, R. Tillmann, R. Uerlings, U. Schurr and A. Wahner, Nature,461, 381 (2009).
10. H. M. Lybarger, Kirk-Othmer Encyclopedia of Chemical Technology: Isoprene, John Wiley & Sons, Inc., Hoboken (2014).
11. J. F. Lamarque, T. C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D. Lee, C. Liousse, A. Mieville, B. Owen, M. G. Schultz, D.
Shindell, S. J. Smith, E. Stehfest, J. Van Aardenne, O. R. Cooper, M.Kainuma, N. Mahowald, J. R. McConnell, V. Naik, K. Riahi and D. P. Van Vuuren, Atmos. Chem. Phys., 10, 7017 (2010).
12. A. Guenther, J. Geophys. Res., 100, 8873 (1995).
13. C. M. da Silva, E. C. C. A. Souza, L. L. da Silva, R. L. Oliveira, S. M. Corrêa and G. Arbilla, Bull. Environ. Contam. Toxicol., 97, 653 (2016).
14. Y.-K. Park, W. G. Shim, S.-C. Jung, H.-Y. Jung and S. C. Kim, Korean J. Chem. Eng., 39, 161 (2022).
15. K.-J Kim, J.-H Lim and J.-C. Kim, J. Korean Soc. Environ. Anal., 8,132 (2005).
16. J.-C. Kim, J. Korean Soc. Atmos., 22, 743 (2006).
17. N. Nath, A. Kumar, S. Chakroborty, S. Soren, A. Barik, K. Pal and F. G. de Souza, ACS Omega, 8, 4436 (2023).
18. T. Karl, P. Prazeller, D. Mayr, A. Jordan, J. Rieder, R. Fall and W.Lindinger, J. Appl. Physiol., 91, 762 (2001).
19. J. King, P. Mochalski, K. Unterkofler, G. Teschl, M. Klieber, M. Stein, A. Amann and M. Baumann, Biochem. Biophys. Res. Commun., 423, 526 (2012).
20. H. M. Chein and T. M. Chen, J. Air Waste Manag. Assoc., 53, 1029 (2003).
21. H. M. Chein, T. M. Chen, S. G. Aggarwal, C. J. Tsai and C. C. Huang, J. Air Waste Manag. Assoc., 54, 218 (2004).
22. J. E. Lee, Y. S. Ok, D. C. W. Tsang, J. H. Song, S.-C. Jung and Y.-K. Park, Sci. Total Environ., 719, 137405 (2020).
23. R. D. F. M. Tallman, Toxicology, 113, 242 (1996).
24. J. V. Eijk and D. Kotzias, Fresenius Environ. Bull., 3, 220 (1994).
25. H. F. Linskens and J. F. Jackson, Modern Methods of Plant Analysis Volume 13: Plant Toxin Analysis, Springer-Verlag, Berlin (1992).
26. H. F. Linskens and J. F. Jackson, Modern Methods of Plant Analysis Volume 19: Plant Volatile Analysis, Springer-Verlag, Berlin (1997).
27. E. A. Woolfenden and W. A. McCleanny, Compendium Method TO-17: Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes, U. S. Environmental Protection Agency, Cincinnati (1999).
28. J.-H. Kim, H. E. Lee and S. J. Yoon, Atmosphere, 14, 485 (2023).
29. M. Even, E. Juritsch and M. Richter, Anal. Chim. Acta, 1238, 340561 (2023).
30. S. W. Harshman, A. E. Jung, K. E. Strayer, B. L. Alfred, J. Mattamana, A. R. Veigl, A. I. Dash, C. E. Salter, M. A. Stoner-Dixon, J. T. Kelly, C. N. Davidson, R. L. Pitsch and J. A. Martin, J. Breath Res., 17, 027101 (2023).
31. S. J. Snow, J. D. Krug, J. M. Turlington, J. E. Richards, M. C. Schladweiler, A. D. Ledbetter, T. Krantz, C. King, M. I. Gilmour, S. H.
Gavett, U. P. Kodavanti, A. K. Farraj and M. S. Hazari, Atmos. Environ., 295, 119525 (2023).
32. A. Guion, S. Turquety, A. Cholakian, J. Polcher, A. Ehret and J. Lathiere, Atmos. Chem. Phys., 23, 1043 (2023).
33. SW-846 Test Method 8260D: Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS), U. S. Environmental Protection Agency, Washington D.C. (2018).
34. D. Biagini, T. Lomonaco, S. Ghimenti, M. Onor, F. G. Bellagambi, P. Salvo, F. D. Francesco and R. Fuoco, Talanta, 200, 145 (2019).
35. P. V. Doskey and W. Gao, J. Geophys. Res., 104, 21263 (1999).
36. W. J. Broadgate, P. S. Liss and S. A. Penkett, Geophys. Res. Lett., 24, 2675 (1997).
37. Y.-H. Kim and K.-H. Kim, Anal. Chem., 85, 7818 (2013).
38. D. Helmig and L. Vierling, Anal. Chem., 67, 4380 (1995).
39. Y.-H. Kim, K.-H. Kim, J. E. Szulejko and D. Parker, Anal. Chem., 86, 6640 (2014).
40. F. Innocenti, R. A. Robinson, T. D. Gardiner and A. J. Finalyson, Differential Absorption Lidar (DIAL) Quantification of VOC Fugitive Emissions from Small Sources in Los Angeles Area, USA, OCTOBER 2015, National Physical Laboratory, Middlesex, (2017).
41. O. Monje, J. Catechis and J. C. Sager, SAE Tech. Pap., 2007-01-3249 (2007).
42. V. Camel and M. Caude, J. Chromatogr. A, 710, 3 (1995).
43. A. Poormohammadi, A. Bahrami, A. Ghiasvand, F. G. Shahna and M. Farhadian, J. Environ. Health Sci. Eng., 17, 1045 (2019).
44. P. Foley, N. Gonzalez-Flesca, I. Zdanevitch and J. Corish, Environ.Sci. Technol., 35, 1671 (2001).
45. J.-H. Ahn, K.-H. Kim, J. E. Szulejko, E. E. Kwon and A. Deep, Microchem. J., 125, 142 (2016).
46. Ö. O. Kuntasal, D. Karman, D. Wang, S. G. Tuncel and G. Tuncel,J. Chromatogr. A, 1099, 43 (2005).
47. M. Richter, E. Juritsch and O. Jann, J. Chromatogr. A, 1626, 461389 (2020).
48. C. Geron, A. Guenther, J. Greenberg, H. W. Loescher, D. Clark and B. Baker, Atmos. Environ., 36, 3793 (2002).
49. B. Tolnai, J. Hlavay, D. Möller, H.-J. Prümke, H. Becker and M.Dostler, Microchem. J., 67, 163 (2000).
50. G. Barrefors and G. Petersson, Chemosphere, 30, 1551 (1995).
51. G. Barrefors and G. Petersson, J. Chromatogr. A, 643, 71 (1993).
52. K. Dettmer, T. Knobloch and W. Engewald, Fresenius J. Anal. Chem.,366, 70 (2000)