Overall
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 2, 2023
Revised April 13, 2023
Accepted May 1, 2023
- Acknowledgements
- This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant: 21CTAP-C157328- 02).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Read
Enhanced photocatalytic activity of TiO2/Ca12Al14O33 in NO removal
Abstract
TiO2 supported on Ca12Al14O33 (Mayenite) was synthesized and investigated for use as a photocatalytic concrete material. TiO2/Mayenite (TiO2/M) catalysts were prepared with varying TiO2 loading amounts (1-20 wt%). The
photocatalytic activity of the catalysts was measured using the ISO standard NO removal test. TiO2/M catalysts exhibited significantly enhanced photocatalytic activities compared to pure TiO2, with the NO removal efficiency increasing
as TiO2 loading increased up to 10 wt% and then decreasing with further loading of TiO2. The NO removal rate of the
TiO2/M catalyst, which contained 10 wt% TiO2, was 8.72 mol (equivalent to 350 mol/m2
∙h). X-ray photoelectron
spectroscopy (XPS) analysis suggested that oxygen on the TiO2/M catalysts with low TiO2 loading exists in the form of
Ti-OH rather than TiO2. This study focuses on the formation of Ti-OH on the catalyst surface, which is promoted by
the unique crystal structure of Mayenite that supplies oxygen ions and electrons to the TiO2 layer. The NO removal
efficiency of the catalysts was found to be dependent on the interaction between TiO2 and Mayenite. Overall, this study
demonstrates the potential of TiO2/Mayenite for use as a highly effective photocatalytic concrete material, with the
unique properties of the Mayenite support playing a critical role in enhancing the photocatalytic activity of the catalyst
Keywords
References
2. S. Roy, M. S. Hedge and G. Madras, Appl. Energy, 86, 2283 (2009).
3. V. Praveena and M. L. J. Martin, J. Energy Inst., 91, 704 (2018).
4. F. Liu, S. Beirle, Q. Zhang, R. J. van der A, B. Zheng, D. Tong and K. He, Atmos. Chem. Phys., 17, 9261 (2017).
5. J.H. Lee, C.F. Wu, G. Hoek, K. de Hoogh, R. Beelen, B. Brunekreef and C. C Chan, Sci. Total Environ., 472, 1163 (2014).
6. Y. J. Kim, H. J. Kwon, I. Heo, I. S. Nam, B. K. Cho, J. W. Choung, M. S. Cha and G. K. Yeo, Appl. Catal. B., 126, 9 (2012).
7. S. Hwang, Y. Kim, J. Lee, E. Lee, H. Lee, C. Jeong, C. H. Kim and D. H. Kim, Catal. Today, 384, 88 (2022).
8. J. Ângelo, L. Andrade, L. M. Madeira and A. Mendes, J. Environ.Manage., 129, 522 (2013).
9. W. Li, H. Yu, Z. Zhang, W. Hei, K. Liang and H. Yu, J. Hazard. Mater., 420, 126640 (2021).
10. C. Chitpakdee, A. Junkaew, P. Maitarad, L. Shi, V. Promarak, N.Kungwan and S. Namuangruk, Chem. Eng. J., 369, 124 (2019).
11. S. H. Seo, S. H. Jo, Y. S. Son, T. H. Kim, T. H. Kim and S. Yu, Chem.Eng. J., 387, 124083 (2020).
12. M. Chen and J. W. Chu, J. Clean. Prod., 19, 1266 (2011).
13. M. Z. Guo and C. S. Poon, Build Environ., 70, 102 (2013).
14. W. Shen, C. Zhang, Q. Li, W. Zhang, L. Cao and J. Ye, J. Clean. Prod.,87, 762 (2015).
15. J. H. Seo, H. N. Yoon, S. H. Kim, S. J. Bae, D. I. Jang, T. G. Kil, S. M.Park and H. K. Lee, Compos. Struct., 33, 68 (2020).
16. T. L. Thompson and J. T. Yates, Chem. Rev., 106, 4428 (2006).
17. K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna and G.Madras, Langmuir, 20, 2900 (2004).
18. E. V. Salomatina, D. G. Fukina, A. V. Koryagin, D. N. Titaev, E. V.Suleimanov and L. A. Smirnova, J. Environ. Chem. Eng., 9, 106078 (2021).
19. V. Tiwari, J. Jiang, V. Sethi and P. Biswas, Appl. Catal. A-Gen., 345,241 (2008).
20. F. Haque, E. Vaisman, C. H. Langford and A. Kantzas, J. Photochem.Photobiol. A., 169, 21 (2005).
21. G. P. Lepore, L. Persaud and C. H. Langford, J. Photochem. Photobiol. A., 98, 103 (1996).
22. S. Liu, M. Lim and R. Amal, Chem. Eng. Sci., 105, 46 (2014).
23. N. Taoufik, A. Elmchaouri, F. Anouar, S. A. Korili and A. Gilb, J.Water Process. Eng., 31, 100876 (2019).
24. D. Kanakaraju, J. Kockler, C. A. Motti, B. D. Glass and M. Oelgemöller, Appl. Catal. B., 166, 45 (2015).
25. A. Yousefi, A. Allahverdi and P. Hejazi, Constr. Build Mater., 41,224 (2013).
26. J. Li, L. Wang, C. Han, F. Su, Y. Leng and L. Ye, Chin. J. Chem. Eng.,
28, 2587 (2020).
27. M. P. Nicolás, J. Balbuena, M. C. Yusta, L. Sánchez, I. N. Blasco, J. M.Fernández and J. I. Alvarez, Cem. Concr. Res., 70, 67 (2015).
28. J. Yao, Y. Zhang, Y. Wang, M. Chen, Y. Huang, J. Cao and S. C. Lee,RSC Adv., 7, 24683 (2017).
29. H. Hosono, K. Hayashi, K. Kajihara, P. V. Sushko and A. L. Shluger,Solid State Ion., 180, 550 (2009).
30. J. N. Kim, C. H. Ko and K. B. Yi, Int. J. Hydrog. Energy, 38, 6072 (2013).
31. Z. S. Li, N. S. Cai, Y. Y. Huang and H. J. Han, Energy Fuels, 19, 1447 (2005).
32. J. H. Park, J. J. Park, H. J. Park and K. B. Yi, Clean Technol., 26, 304 (2020).
33. I. Rhee, J. S. Lee, J. B. Kim and J. H. Kim, Materials, 11, 877 (2018).
34. X. Tan, G. Qin, G. Cheng, X. Song, X. Chen, W. Dai and X. Fu, Catal. Sci. Technol., 20, 6923 (2020).
35. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara and K.Takeuchi, J. Mol. Catal. A. Chem., 161, 205 (2000).
36. H. Eskandarloo, A. Badiei and M. A. Behnajady, Ind. Eng. Chem.Res., 53, 7847 (2014).
37. R. Wang, H. Yang, Y. Lu, K. Kanamori, K. Nakanishi and X. Guo, ACS Omega, 2, 8148 (2017).
38. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, in Handbokk of X-ray photoelectron spectroscopy, J. Chastain Eds., PerkinElmer Corporation, Eden Prarie (1992).
39. J. S. Dalton, P. A. Janes, N. G. Jones, J. A. Nicholson, K. R. Hallam and G. C Allen, Environ. Pollut., 120, 415 (2002).
40. B. Ohtani, Y. Okugawa, S. Nishimoto and T. Kagiya, J. Phys. Chem.,91, 3550 (1987).
41. Y. Oosawa and M. Grätzel, J. Chem. Soc., Faraday Trans., 1, 197 (1988)