ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Overall

Language
Korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 12, 2023
Revised September 1, 2023
Accepted September 2, 2023
Acknowledgements
The authors gratefully acknowledge the financial support of the SNGPL Chair of Gas Engineering in the Department of Chemical Engineering, University of Engineering & Technology, Lahore
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Read

Exergoeconomic analysis of an LNG integrated - air separation process

1Department of Chemical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan 2Department of Chemical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan
faheem@uet.edu.pk
Korean Journal of Chemical Engineering, December 2023, 40(12), 3017-3028(12), 10.1007/s11814-023-1567-z
downloadDownload PDF

Abstract

An integrated LNG regasification - air separation process is investigated using exergy and exergoeconomic analyses. The objective of developing this integrated process is to lower the calorific value of LNG by mixing regasified LNG with high purity nitrogen, while simultaneously recovering and utilizing valuable cryogenic energy from the LNG during its regasification to minimize the power consumption of the air separation unit (ASU) for nitrogen production. The overall exergy efficiency and exergy destruction of the integrated process are 76.47% and 28.52 MW, respectively, with the compression section causing the most exergy destruction. Further exergoeconomic analysis of the proposed process reveals that the air compressors have the highest capital investment (CI) and operating and maintenance (O&M) cost rates, the pumps for cooling water and LNG have the highest exergoeconomic factors, and the low-pressure column and a multistream heat exchanger have the highest exergy destruction cost rates. A parametric study is also conducted to examine the impact of economic variables including interest rate, plant life, and compressor performance on exergy destruction, CI and O&M cost rates, and exergoeconomic factor. The findings of this study offer valuable insight into the design and optimization of similar integrated processes, with potential benefits for the energy industry.

References

1. A. Atienza-Márquez, J. C. Bruno and A. Coronas, Appl. Therm.Eng., 132, 463 (2018).
2. J. Pospíšil, P. Charvát, O. Arsenyeva, L. Klimeš, M. Špiláček and J. J.Klemeš, Renew. Sust. Energy Rev., 99, 1 (2019).
3. A. Mahmood, N. Javaid, A. Zafar, R. A. Riaz, S. Ahmed and S.Razzaq, Renew. Sust. Energy Rev., 31, 182 (2014).
4. K. Bakht, F. Aslam, T. Nawaz and B. Seerat, Int. J. Adv. Comput Sci. Appl., 7, 66 (2016).
5. Exxon Mobil Corporation, 2019 Outlook for Energy: A Perspective to 2040 (2019).
6. U. Perwez, A. Sohail, S. F. Hassan and U. Zia, Energy, 93, 2423 (2015).
7. S. Malik, M. Qasim, H. Saeed, Y. Chang and F. Taghizadeh-Hesary, Energy Policy, 144, 111552 (2020).
8. Ministry of Planning Development & Special Initiatives (Government of Pakistan), Pakistan Natural Gas: Policy Analysis & Way Forward, Islamabad, Pakistan (2023).
9. British Petroleum, BP Statistical Review of World Energy 2021 (2021).
10. National Electric Power Regulatory Authority (NEPRA), State of Industry Report 2022, Islamabad, Pakistan (2022).
11. P. Dorosz, P. Wojcieszak and Z. Malecha, Entropy, 20, 59 (2018).
12. D. Fioriti, A. Baccioli, G. Pasini, A. Bischi, F. Migliarini, D. Poli and L. Ferrari, Energy Convers. Manage., 238, 114128 (2021).
13. I. Szczygiel and Z. Bulinski, Energy, 165, 999 (2018).
14. J. Bao, T. Yuan, L. Zhang, N. Zhang, X. Zhang and G. He, Energy Convers. Manage., 184, 107 (2019).
15. M. Mehrpooya, M. Kalhorzadeh and M. Chahartaghi, J. Cleaner Prod., 113, 411 (2016).
16. A. Ebrahimi and M. Ziabasharhagh, Energy, 126, 868 (2017).
17. D. Kim, R. E. H. Giametta and T. Gundersen, Ind. Eng. Chem. Res.,57, 5914 (2018).
18. T. Gao, W. Lin and A. Gu, Energy Convers. Manage., 52, 2401 (2011).
19. G. Tsatsaronis and T. Morosuk, Energy, 35, 820 (2010).
20. M. Mehrpooya, R. Esfilar and S. M. A. Moosavian, J. Cleaner Prod.,142, 1749 (2017).
21. S. Chen, J. Xu, X. Dong, H. Zhang, Q. Gao and C. Tan, Int. J.Refrig., 90, 264 (2018).
22. H. Dhameliya and P. Agrawal, Energy Procedia, 90, 660 (2016).
23. P. Wang and T.-S. Chung, Water Res., 46, 4037 (2012).
24. C. Dispenza, G. Dispenza, V. La Rocca and G. Panno, Appl. Therm.Eng., 29, 3595 (2009).
25. I. Lee, J. Park and I. Moon, Energy, 140, 106 (2017).
26. Confidential, Design specification of a gas-fired power plant in Pakistan (n.d.).
27. M. Mehrpooya and H. Ansarinasab, Energy Convers. Manage., 99,400 (2015).
28. S. Kumar, H.-T. Kwon, K.-H. Choi, W. Lim, J. H. Cho, K. Tak and I. Moon, Appl. Energy, 88, 4264 (2011).
29. Y. Xiong and B. Hua, Adv. Mater. Res., 881-883, 653 (2014).
30. T. He, Z. R. Chong, J. Zheng, Y. Ju and P. Linga, Energy, 170, 557 (2019).
31. S. Wang, K. Huang, X. Wang, N. Liao, W. Yan, Q. Pei and B. Xia,Open Pet. Eng. J., 9, 226 (2016).
32. A. Ebrahimi, M. Meratizaman, H. A. Reyhani, O. Pourali and M.Amidpour, Energy, 90, 1298 (2015).
33. M. H. Hamayun, N. Ramzan, M. Hussain and M. Faheem, Ind.Eng. Chem. Res., 61, 2843 (2022).
34. Q. Fu, Y. Kansha, C. Song, Y. Liu, M. Ishizuka and A. Tsutsumi,Appl. Energy, 162, 1114 (2016).
35. M. Elhelw, A. A. Alsanousie and A. Attia, Alexandria Eng. J., 59,613 (2020).
36. S. Chen, X. Dong, J. Xu, H. Zhang, Q. Gao and C. Tan, Energy,171, 341 (2019).
37. M. Mehrpooya, H. Dehghani and S. M. A. Moosavian, J. Power Sources, 306, 107 (2016).
38. H. Ansarinasab and M. Mehrpooya, Appl. Therm. Eng., 115, 885 (2017).
39. A. Mohammadi and M. Mehrpooya, Appl. Therm. Eng., 116, 685 (2017).
40. M. J. Zonouz and M. Mehrpooya, Energy, 140, 261 (2017).
41. H. Ansarinasab, M. Mehrpooya and A. Mohammadi, J. Cleaner Prod., 144, 248 (2017).
42. M. Mehrpooya, H. Ansarinasab, M. M. M. Sharifzadeh and M. A. Rosen, Energy Convers. Manage., 163, 151 (2018).
43. W. Xu, J. Duan and W. Mao, J. Therm. Sci., 23, 77 (2014).
44. T. Morosuk, M. Schult and G. Tsatsaronis, in ASME 2014 8th International Conference on Energy Sustainability, ASME, Boston, Massachusetts, USA, p. V002T12A010 (2014).
45. Z. Jieyu, L. Yanzhong, L. Guangpeng and S. Biao, Phys. Procedia, 67,116 (2015).
46. M. Mehrpooya, M. M. M. Sharifzadeh and M. A. Rosen, Energy, 90,2047 (2015).
47. R. Esfilar, M. Mehrpooya and S. M. A. Moosavian, Energy Convers.Manage., 157, 438 (2018).
48. M. Mehrpooya and H. Ansarinasab, J. Nat. Gas Sci. Eng., 26, 782 (2015).
49. B. Ghorbani, M.-H. Hamedi, R. Shirmohammadi, M. Hamedi and M. Mehrpooya, Sust. Energy Technol. Assess., 17, 56 (2016).
50. M. Mehrpooya and M. J. Zonouz, Energy Convers. Manage., 139, 245 (2017).
51. M. Mehrpooya, H. Ansarinasab, M. M. M. Sharifzadeh and M. A.Rosen, J. Power Sources, 364, 299 (2017).
52. Aspentech, Aspen plus is a proprietary software product of Aspentech, https://www.Aspentech.Com.
53. T. J. Kotas, The exergy method of thermal plant analysis, Elsevier (1985).
54. S. Tesch, T. Morosuk and G. Tsatsaronis, Energy, 141, 2458 (2017).
55. A. Palizdar, T. Ramezani, Z. Nargessi, S. AmirAfshar, M. Abbasi and A. Vatani, Energy Convers. Manage., 150, 637 (2017).
56. M. H. Hamayun, N. Ramzan, M. Hussain and M. Faheem, Energies, 13, 6361 (2020).
57. F. Asif, M. H. Hamayun, M. Hussain, A. Hussain, I. M. Maafa and Y.-K. Park, Sustainability, 13, 6490 (2021).
58. M. H. Hamayun, M. Hussain, I. Shafiq, A. Ahmed and Y.-K. Park,Environ. Eng. Res., 27, 200683 (2022).
59. B. B. Kanbur, L. Xiang, S. Dubey, F. H. Choo and F. Duan, Renew.Sust. Energy Rev., 79, 1171 (2017).
60. V. M. Ambriz-Díaz, C. Rubio-Maya, E. Ruiz-Casanova, J. MartínezPatiño and E. Pastor-Martínez, Energy Convers. Manage., 203,112227 (2020).
61. C. J. Okereke, O. Lasode and I. O. Ohijeagbon, Heliyon, 6, e04402 (2020).
62. H. Ozcan and I. Dincer, Int. J. Hydrogen Energy, 42, 2435 (2017).
63. J. R. Couper, W. R. Penney, J. R. Fair and S. M. Walas, Chemical process equipment: Selection and design, 3rd ed., Elsevier (2012).
64. W. D. Seider, D. R. Lewin, J. D. Seader, S. Widagdo, R. Gani and K. M. Ng, Product and process design principles: Synthesis, analysis,and evaluation, 4th ed., John Wiley & Sons, Inc. (2017).
65. V. Eveloy, W. Karunkeyoon, P. Rodgers and A. Al-Alili, Int. J. Hydrogen Energy, 41, 13843 (2016).
66. R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz and D. Bhattacharyya, Analysis, synthesis, and design of chemical processes, 4th
ed., Prentice Hall (2012).
67. G. Tsatsaronis, Int. J. Exergy, 5, 489 (2008).
68. M. Ameri, P. Ahmadi and A. Hamidi, Int. J. Energy Res., 33, 499 (2009).
69. C. Uysal, Environ. Prog. Sust. Energy, 39, e13297 (2020).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로