Overall
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 29, 2023
Revised June 23, 2023
Accepted June 29, 2023
- Acknowledgements
- This study was supported by a Research Program funded by SeoulTech (Seoul National University of Science and Technology).
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Read
Effect of hierarchically reduced SiOx on anode performance of Li-ion batteries
Abstract
Renewable energy sources have attracted considerable attention in both academia and industry owing to
concerns about environmental pollution, global warming, and fossil fuel depletion. In this regard, the application scope
of Li-ion batteries (LIBs) is continuously broadening owing to their advantages, such as their high energy and power
densities, eco-friendliness, and portability. As highly capacitive anode materials for LIBs, Si-based materials should circumvent the critical limitations of large volume expansion and low electrical conductivity. Herein, we propose hierarchically reduced SiOx as an anode material for LIBs. Using the magnesiothermic reduction process, we optimized the
electrical conductivity and kinetic properties of SiOx materials based on SiO2. The resultant SiOx electrode exhibited a
high specific capacity of 1,286.8 mAh g1
along with stable cyclability up to 100 cycles. The enhanced electrochemical
performance was mainly attributed to the oxygen vacancies and mesoporous surface morphology of SiOx, which were
generated during hierarchical magnesiothermic reduction. This study demonstrates the correlation between the structural properties and electrochemical performance according to the reduction level of Si-based active materials.
References
2. Y. Qi, G. Wang, S. Li, T. Liu, J. Qiu and H. Li, Chem. Eng. J., 397,125380 (2020).
3. Y. Yang, E. G. Okonkwo, G. Huang, S. Xu, W. Sun and Y. He, Energy Storage Mater., 36, 186 (2021).
4. C. Lv, X. Zhou, L. Zhang, C. Yan, M. Srinivasan, Z. W. She, C. Liu,H. Pan, S. Li, Y. Wen and Q. Yan, Adv. Mater., 34, 2101474 (2022).
5. M. Zhang, Y. Liu, D. Li, X. Cui, L. Wang, L. Li and K. Wang, Energies, 16, 1599 (2023).
6. Z. Li, Y. Zhang, T. Liu, X. Gao, S. Li, M. Ling, C. Liang,and Z. Lin, Adv. Energy Mater., 10, 1903110 (2020).
7. K.-H. Kim, T.-J. Song and H.-J. Ahn, Appl. Surf. Sci., 608, 155084 (2023).
8. P. Li, H. Kim, S.-T. Myung and Y.-K. Sun, Energy Storage Mater.,35, 550 (2021).
9. S. Chae, S.-H. Choi, N. Kim, J. Sung and J. Cho, Angew. Chem.-Int.Edit., 59, 110 (2020).
10. D. Sui, M. Yao, L. Si, K. Yan, J. Shi, J. Wang, C. C. Xu and Y. Zhang,Carbon, 205, 510 (2023).
11. T. Liu, Y. Qu, J. Liu, L. Zhang, B. Cheng and J. Yu, Small, 17,2103673 (2021).
12. W. Wu, M. Wang, J. Wang, C. Wang and Y. Deng, ACS Appl. Energy Mater., 3, 3884 (2020).
13. Q. Chen, L. Tan, S. Wang, B. Liu, Q. Peng, H. Luo, P. Jiang, H. Tang and T. Sun, Electrochim. Acta, 385, 138385 (2021).
14. H. Jin, M. Zhu, J. Liu, L. Gan, Z. Gong and M. Long, Appl. Surf.Sci., 541, 148436 (2021).
15. J. Tang, L. Hou, T. Hu, S. Fan, X. Zhou and J. Yang, Compos. Commun., 23, 100544 (2021).
16. J. Zhang, S. Zuo, Y. Wang, H. Yin, Z. Wang and J. Wang, J. Power Sources, 495, 229803 (2021).
17. S. B. Patil, H. Phattepur, B. Kishore, R. Viswanatha and G. Nagaraju, Mater. Renew. Sustain. Energy, 8, 10 (2019).
18. B. Hariyanto, D. A. P. Wardani, N. Kurniawati, N. P. Har, N. Darmawan and Irzaman, J. Phys., 2019, 012106 (2021).
19. H.-P. Ma, J.-H. Yang, J.-G. Yang, L.-Y. Zhu, W. Huang, G.-J. Yuan,J.-J. Feng, T.-C. Jen and H.-L. Lu, Nanomaterials, 9, 55 (2019).
20. K.-H. Kim, B.-R. Koo and H.-J. Ahn, Ceram. Int., 44, 9408 (2018).
21. B.-R. Koo, D.-H. Oh and H.-J. Ahn, Appl. Surf. Sci., 433, 27 (2018).
22. H. Xue, Y. Cheng, Q. Gu, Z. Wang, Y. Shen, D. Yin, L. Wang and G. Huang, Nanoscale, 13, 3808 (2021) J. Zheng