Issue
Korean Chemical Engineering Research,
Vol.60, No.1, 51-61, 2022
Mathematical Modelling and Simulation of CO2 Removal from Natural Gas Using Hollow Fibre Membrane Modules
Gas separation via hollow fibre membrane modules (HFMM) is deemed to be a promising technology for natural gas sweetening, particularly for lowering the level of carbon dioxide (CO2) in natural gas, which can cause various problems during transportation and process operation. Separation performance via HFMM is affected by membrane properties, module specifications and operating conditions. In this study, a mathematical model for HFMM is developed, which can be used to assess the effects of the aforementioned variables on separation performance. Appropriate boundary conditions are imposed to resolve steady-state values of permeate variables and incorporated in the model equations via an iterative numerical procedure. The developed model is proven to be reliable via model validation against experimental data in the literature. Also, the model is capable of capturing axial variations of process variables as well as predicting key performance indicators. It can be extended to simulate a large-scale plant and identify an optimal process design and operating conditions for improved separation efficiency and reduced cost.
[References]
  1. Chu Y, He X, Membr., 8(4), 118, 2018
  2. Rufford TE, Smart S, Watson GCY, Graham BF, Boxall J, Diniz da Costa JC, May EF, J. Pet. Sci. Eng., 94-95, 123, 2012
  3. Chu YH, Lindbrathen A, Lei LF, He XZ, Hillestad M, Chem. Eng. Res. Des., 148, 45, 2019
  4. Hosseini SS, Dehkordi JA, Kundu PK, Chem. Prod. Process Model., 11(1), 7, 2016
  5. He X, Chem. Prod. Process Model., 11(1), 7 (2016).
  6. He X, Energy, Sustainability and Society. 2018.
  7. Zhang Y, Sunarso J, Liu S, Wang R, International Journal of Greenhouse Gas Control. Elsevier January1, 84 (2013).
  8. Khalilpour R, Mumford K, Zhai H, Abbas A, Stevens G, Rubin ES, J. Clean Prod., 103, 286, 2015
  9. Buonomenna MG, Recent Patents Mater. Sci., 10(1), (2017).
  10. Adewole JK, Ahmad AL, Ismail S, Leo CP, International Journal of Greenhouse Gas Control. Elsevier September 1, 46 2013.
  11. Bazhenov SD, Bildyukevich AV, Volkov AV, Fibers. Multidisciplinary Digital Publishing Institute October 10, 76 2018.
  12. Hafeez S, et al., Frontiers of Chemical Science and Engineering., 720 2021.
  13. Siagian UWR, Raksajati A, Himma NF, Khoiruddin K, Wenten IG, J. Nat. Gas Sci. Eng., 67, 172, 2019
  14. Sridhar S, Smitha B, Aminabhavi TM, Separation and Purification Reviews., 113 2007.
  15. Sainath K, Modi A, Bellare J, Chem. Eng. J. Adv., 5, 100074, 2021
  16. Vu DQ, Koros WJ, Miller SJ, Ind. Eng. Chem. Res., 41(3), 367, 2002
  17. Sridhar S, Veerapur RS, Patil MB, Gudasi KB, Aminabhavi TM, J. Appl. Polym. Sci., 106(3), 1585, 2007
  18. Lee S, Binns M, Lee JH, Moon JH, Yeo JG, Yeo YK, Lee YM, Kim JK, J. Membr. Sci., 541, 224, 2017
  19. Falbo F, Brunetti A, Barbieri G, Drioli E, Tasselli F, Appl. Petrochemical Res., 6(4), 439, 2016
  20. Liu Y, Liu Z, Kraftschik BE, Babu VP, Bhuwania N, Chinn D, Koros WJ, J. Membr. Sci., 632, 119361, 2021
  21. Liu Y, Liu Z, Morisato A, Bhuwania N, Chinn D, Koros WJ, J. Membr. Sci., 601, 117910, 2020
  22. Lin HQ, Van Wagner E, Raharjo R, Freeman BD, Roman I, Adv. Mater., 18(1), 39, 2006
  23. Ibrahim MH, El-Naas MH, Zhang ZE, Van der Bruggen B, Energy Fuels, 32(2), 963, 2018
  24. Scholz M, Wessling M, Balster J, Chapter 5. Design of Membrane Modules for Gas Separations; 125 2011.
  25. Ahmada F, Lau KK, Lock SSM, Rafiq S, Khan AU, Lee M, J. Ind. Eng. Chem., 21, 1246, 2015
  26. Qadir S, Hussain A, Ahsan M, Processes, 7(7), 420, 2019
  27. Ahmad F, Lau KK, Shariff AM, Murshid G, Comput. Chem. Eng., 36, 119, 2012
  28. Chu Y, He X, Membranes, 8(4), 118, 2018
  29. Bandehali S, Sanaeepur H, Amooghin AE, Moghadassi A, Modeling in Membranes and Membrane-Based Processes; John Wiley & Sons, Ltd, 201 2020.
  30. Shamsabadi AA, Kargari A, Farshadpour F, Laki S, J. Membr. Sep. Technol., 1, 19, 2012
  31. Adewole JK, Ahmad AL, Korean J. Chem. Eng., 33(10), 2998, 2016
  32. Nakao A, Macedo APF, Versiani BM, De QF, Araujo O, De Medeiros JL, Comput. Aided Chem. Eng., 27(C), 1875, 2009
  33. Hosseini SS, Dehkordi JA, Kundu PK, Korean J. Chem. Eng., 33(11), 3085, 2016
  34. Lock SSM, Lau KK, Ahmad F, Shariff AM, Int. J. Greenh. Gas Control, 36, 114, 2015
  35. Ahsan M, Hussain A, Pacific Sci. Rev. A Nat. Sci. Eng., 18(1), 47, 2016
  36. Hoorfar M, Alcheikhhamdon Y, Chen B, Comput. Chem. Eng., 117, 11, 2018
  37. Gilassi S, Taghavi SM, Rodrigue D, Kaliaguine S, AIChE J., 64(5), 1766, 2018
  38. Feng XS, Ivory J, Rajan VSV, AIChE J., 45(10), 2142, 1999