Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
인공신장을 위한 셀룰로즈 격막의 평가
Evaluation of Cellulosic Membrane for Artificial Kidney
HWAHAK KONGHAK, June 1978, 16(3), 189-199(11), NONE
Download PDF
Abstract
전하나 흡착능이 거의 없는 셀룰로즈 격막의 물질전달에 관한 특성을 혈액투석기 설계를 위해서 조사하였다. 유니온 셀로판회사(한국)에서 제조한 셀로판 격막의 총괄격막 저항계수를 이중 폐쇄투석장치에 의해서 구했다. 혈류속도, dialyzate속도 및 분자크기가 총괄저항계수에 미치는 영향도 아울러 살펴 보았다. Ultrafiltration 실험은 Amicon ultrafilter를 사용하여 행하였고 용질 거부계수는 분자량 60에서 44,000까지의 범위에 걸쳐서 구했다. 분자반경(Stokes-Einstein 반경)이 격막의 저항계수를 추정하는데 있어서 분자량 보다 더 합당한 인자임을 알았다. 셀룰로즈 격막에 대한 관계식은 다음과 같다.
격막 1(22μ 두께, 유니온 셀로판, 서울, 한국)
log(R0)=2.224 log(r0)+0.745
격막 2(38μ 두께)
log(R0)=1.326 log(r0)+0.945
R0 : 총괄격막저항계수(min/cm)
r0 : Stokes-Einstein 반경(Å)
격막 2호로 만든 혈액투석기를 신부전환자에게 적용시켰다고 했을 때, 환자내의 노폐물(요소, 크레아티닌)의 동력학을 two compartment 모델을 사용하여 전산기로 simulation하였다.
격막 1(22μ 두께, 유니온 셀로판, 서울, 한국)
log(R0)=2.224 log(r0)+0.745
격막 2(38μ 두께)
log(R0)=1.326 log(r0)+0.945
R0 : 총괄격막저항계수(min/cm)
r0 : Stokes-Einstein 반경(Å)
격막 2호로 만든 혈액투석기를 신부전환자에게 적용시켰다고 했을 때, 환자내의 노폐물(요소, 크레아티닌)의 동력학을 two compartment 모델을 사용하여 전산기로 simulation하였다.
The mass transfer characteristics of cellulosic membranes nearly devoid of any charge or adsorption property were investigated in vitro for the design of hemodialyzer. Overall membrane resistance(O.M.R.) of cellophane produced by Union Cellophane(Seoul, Korea) was determined by a dual closed-loop dialysis technique with which the effects of blood flow rate, dialyzate flow rate and molecular size on O. M. R. were examined. Ultrafiltration experiment was performed by making use of Amicon ultrafilter with which solute rejection was determined covering M. W. 60 to 44,000. Solute radius(Stokes-Einstein radius) is found to be more reasonable parameter in estimating membrane resistance than molecular weight. The correlations for cellulosic membranes have the following formula.
For membrane 1(22μ thickness, Union Cellophane, Seoul, Korea)
log(R0)=2.224 log(r0)+0.745
For membrane 2(38μ thickness)
log(R0)=1.326 log(r0)+0.945
where R0 : overall membrane resistance(min/cm)
r0 : Stokes-Einstein radius,(Å).
The kinetics of metabolic wastes(urea, creatinine) of the uremic patient treated by hemodialyzer made of membrane 2(37μm dry thickness, Union Cellophane, Seoul, Korea) was simulated with computer using a two compartment model.
For membrane 1(22μ thickness, Union Cellophane, Seoul, Korea)
log(R0)=2.224 log(r0)+0.745
For membrane 2(38μ thickness)
log(R0)=1.326 log(r0)+0.945
where R0 : overall membrane resistance(min/cm)
r0 : Stokes-Einstein radius,(Å).
The kinetics of metabolic wastes(urea, creatinine) of the uremic patient treated by hemodialyzer made of membrane 2(37μm dry thickness, Union Cellophane, Seoul, Korea) was simulated with computer using a two compartment model.