ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

쿠엣트 응집기를 이용한 고형물의 응집 및 고-액 분리에 관한 실험적 연구

Experimental Studies on Flocculation of Solid Particles and Solid-Liquid Separation with Couette Flocculators-Part2. Flocculation Kinetic Modeling

HWAHAK KONGHAK, February 1990, 28(1), 30-37(8), NONE
downloadDownload PDF

Abstract

테일러 와류의 형성이 가능한 쿠엣트 응집기에서 수용액 중 고형물의 응집 및 분리특성을 고찰하기 위하여 실리카 및 카올린 현탁입자에 양이온계 고분자 응집제를 투여한 실험계를 대상으로 연속실험을 실시하였다. 최대 분리효율을 얻기 위해 투여되는 고분자 응집제의 최소 농도는 현탁입자 농도의 0.425승에 비례하였으며 고분자 응집제의 현탁입자에 대한 흡착률은 현탁입자의 농도가 증가할수록 감소하였다. 응집물의 파열이 일어나지 않는 범위에서 초기 현탁입자의 농도, 응집 후 침강 분리되지 않은 현탁입자의 농도, 평균 속도구배 및 체류시간을 함수로 하는 경험적 응집속도 모델을 기존의 LaMer-Healy모델과 Huck-Murphy 모델을 기초로 구하였다.
The study on flocculation in a Couette flocculator showing Taylor Vortices and subsequent solid-liquid separation characteristics were conducted experimentally. For this study, silica or kaolin suspensions in water were used to investigate flocculation by cationic polymers. The minimum flocculant concentration to show the maximum separation efficiency was found proportional to 0.425-power of the suspension concentration. The adsorption ratio of polymer flocculant on suspended particles decreased as the suspension concentration increased. An empirical floccula-tion kinetic model without floc breakage was suggested to combine the kinetic model of Huch and Murphy into that of LaMer and Healy. The important parameters were the initial suspension concentration, the unflocculated suspension concentration, the retention time and the root-mean-square velocity gradient.

Keywords

References

Jeon G, Choi CK, HWAHAK KONGHAK, 27(6), 812 (1989)
Huck PM, Murphy KL, J. Environ. Eng.-ASCE, 104, 767 (1978)
Higashitani K, Kage H, Matsuno Y, Kag. Kog. Ronbunshu, 10, 127 (1984)
Iler RK, J. Colloid Interface Sci., 37, 364 (1971) 
Black AP, Birkner FB, Morgan JJ, J. AWWA, 57, 1547 (1965)
Healy TW, J. Colloid Sci., 16, 609 (1961) 
Lamer VK, Healy TW, J. Phys. Chem., 67, 2417 (1963)
Mabire F, Audebert R, Quivoron C, J. Colloid Interface Sci., 97, 120 (1984) 
Lamer VK, Smellie RH, J. Colloid Sci., 11, 720 (1956)
Shull KE, J. AWWA, 59, 1164 (1967)
Higashitani K, Hosakawa G, Kag. Kog. Ronbunshu, 9, 543 (1983)
Jankovics L, Polym. Lett., 2, 247 (1964) 
Dixon JK, J. Colloid Interface Sci., 23, 465 (1967) 
Vn Smoluchowski M, Physik. Z., 17, 557 (1916)
Camp TR, Stein PC, J. Boston Soc. Civ. Eng., 30, 219 (1943)
Lamer VK, Healy TW, Rev. Pure Appl. Chem., 13, 112 (1963)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로