Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
세공분포모델을 이용한 CuO/Υ-Al2O3와 아황산가스의 반응성 연구
Study on the Reaction of CuO/Υ-Al2O3 and SO2 using Distributed Pore Size Model
HWAHAK KONGHAK, April 1990, 28(2), 184-195(12), NONE
Download PDF
Abstract
구형의 Υ-Al2O3에 산화동을 담지시킨 후 반응조건에 따라 아황산가스와 반응 흡착시켰다. 각 조건에서 산화동의 전화율을 측정하고 세공분포모델을 이용하여 CuO/Υ-Al2O3와 아황산가스의 반응 흡착거동을 비교 분석하였다. 그 결과 초기 표면반응속도는 담지농도에 따라 변하지만 활성화에너지는 14.49KJ/mol로 거의 일정하였으며 입자레이놀즈 수는 최종 전화율에 영향을 미치지 않았다. 또한 표면확산계수의 활성에너지 값은 Dse1=1.82KJ/mol, Dse2, Des3=5.39KJ/mol로 세공영역에 따라 다르게 나타났다. 세공분포모델을 이용하여 산출한 전화율은 여러 반응조건에서 실험치에 근접하였으나 아황산가스 농도가 2,000ppm에서 3,000ppm으로 증가할 때와 담지농도가 6wt%에서 8wt%로 증가할 때는 평형전화상태에서 차이를 보였다. 최적 반응온도인 450℃이내에서는 실험치에 접근하였으나 그 이상의 온도범위에서는 큰 차이를 보였다. 반응온도 450℃ 이내에서는 실험치에 접근하였으나 그 이상의 온도범위에서는 큰 차이를 보였다. 반응온도 450℃, 담지농도 6wt%, 아황산가스 농도 2,000ppm에서 실제의 전화율은 63%로 최대치를 보였다.
After impregnating copper oxide by using a spherical γ-Al2O3, CuO/γ-Al2O3 reacted with and/or ad-sorbed the sulfur dioxide on reaction conditions. Conversion of copper oxide was estimated under each condition and then the reaction and adsorption behavior between CuO/γ-Al2O3 and sulfur dioxide were analytically compared by us-ing the distributed pore size model. From the results, it was shown that although the initial surface reaction rates varied with the impregnation concen-tration, the activation energy was constant as about 14.49KJ/mol, and that the final conversion of CuO/γ-Al2O3 was not affected by the particle Reynolds number. Also the values of activation energy of surface diffusion coefficients were shown to be Des1=5.39KJ/mol and Des2, Des3=5.39KJ/mol depending on the pore size region. Although conversion rates acquired by the analysis of distributed pore size model were close to the experimental valuses under most of reaction conditions, there were considerable deviations in the final conversion when the sulfur dioxide concentration changed from 2,000 to 3,000ppm and the impregnation concentration increased from 6 to 8wt%. Also below the optimum temperature of 450℃ the conversion rates based on the model were close to the ex-perimental value, but over 450℃, there were considerable deviations between the two values. The maximum ex-perimental conversion was shown to be 63% at 450℃ with 2,000 ppm of SO2 on 6wt% CuO/γ-Al2O3.
References
Simons GA, Garman AR, Boni AA, AIChE J., 33, 211 (1987)
Prakash VR, Douglas PH, Chem. Eng. Sci., 34, 427 (1979)
Gullet BK, Bruce KR, AIChE J., 33, 10 (1987)
Hartman M, Coughlin RW, Ind. Eng. Chem. Process Des. Dev., 13, 248 (1974)
Muhammad S, Theodore TT, Chem. Eng. Sci., 43, 113 (1988)
Per Alvfors GS, Chem. Eng. Sci., 43, 1183 (1988)
Christman PG, Edgar TF, AIChE J., 29, 388 (1983)
Petersen EE, AIChE J., 3, 443 (1957)
Simons GA, Finson ML, Combust. Sci. Technol., 19, 217 (1979)
Simons GA, Combust. Sci. Technol., 19, 227 (1979)
Ingraham TR, Marrier P, Trans. Met. Soc. AIME, 233, 363 (1965)
Ingraham TR, Trans. Met. Soc. AIME, 233, 359 (1965)
Kolthoff IM, "Quantitative Chemical Analysis," 4th ed., Macmillan (1969)
Satterfield CN, "Mass Transfer in Heterogeneous Catalysis," MIT Press, Cambridge (1970)
Yates JG, Best RJ, Ind. Eng. Chem. Process Des. Dev., 15, 239 (1976)
Ranz WE, Marshall WR, Chem. Eng. Prog., 48, 173 (1952)
Julian S, James WE, Sohn HY, "Gas-Solid Reactions," Academic Press, London (1976)
Bird RB, Stewart WE, Lightfoot EN, "Transport Phenomena," Wiley Int. Ed. (1960)
Krasuk JH, Smith JM, Ind. Eng. Chem. Fundam., 1, 102 (1965)
Ralph TY, Ind. Eng. Chem. Fundam., 21, 262 (1982)
Satterfield CN, "Heterogeneous Catalysis in Practice," McGraw-Hill (1980)
Chung SH, Kim DC, Park CY, Cho CH, HWAHAK KONGHAK, 27(6), 767 (1989)
Prakash VR, Douglas PH, Chem. Eng. Sci., 34, 427 (1979)
Gullet BK, Bruce KR, AIChE J., 33, 10 (1987)
Hartman M, Coughlin RW, Ind. Eng. Chem. Process Des. Dev., 13, 248 (1974)
Muhammad S, Theodore TT, Chem. Eng. Sci., 43, 113 (1988)
Per Alvfors GS, Chem. Eng. Sci., 43, 1183 (1988)
Christman PG, Edgar TF, AIChE J., 29, 388 (1983)
Petersen EE, AIChE J., 3, 443 (1957)
Simons GA, Finson ML, Combust. Sci. Technol., 19, 217 (1979)
Simons GA, Combust. Sci. Technol., 19, 227 (1979)
Ingraham TR, Marrier P, Trans. Met. Soc. AIME, 233, 363 (1965)
Ingraham TR, Trans. Met. Soc. AIME, 233, 359 (1965)
Kolthoff IM, "Quantitative Chemical Analysis," 4th ed., Macmillan (1969)
Satterfield CN, "Mass Transfer in Heterogeneous Catalysis," MIT Press, Cambridge (1970)
Yates JG, Best RJ, Ind. Eng. Chem. Process Des. Dev., 15, 239 (1976)
Ranz WE, Marshall WR, Chem. Eng. Prog., 48, 173 (1952)
Julian S, James WE, Sohn HY, "Gas-Solid Reactions," Academic Press, London (1976)
Bird RB, Stewart WE, Lightfoot EN, "Transport Phenomena," Wiley Int. Ed. (1960)
Krasuk JH, Smith JM, Ind. Eng. Chem. Fundam., 1, 102 (1965)
Ralph TY, Ind. Eng. Chem. Fundam., 21, 262 (1982)
Satterfield CN, "Heterogeneous Catalysis in Practice," McGraw-Hill (1980)
Chung SH, Kim DC, Park CY, Cho CH, HWAHAK KONGHAK, 27(6), 767 (1989)