Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
알칼리조촉매를 사용한 Zn-Oxide 담지 촉매상에서 메탄의 Oxidative Coupling 반응특성
The Oxidative Coupling of Methane over Supported Zine Oxide Catalyst with Alkali Promotes
HWAHAK KONGHAK, October 1990, 28(5), 536-546(11), NONE
Download PDF
Abstract
조성과 담체 및 알칼리조촉매를 달리한 Zn-Oxide 촉매상에서 메탄의 oxidative coupling 반응에 의한 에틸렌과 에탄의 합성반응을 연구하였다. 담지촉매의 산점은 에틸렌과 에탄의 선택도를 감소시켰으며, 산점이 나타나지 않은 Zn-Oxide/α-Al2O3촉매의 선택도가 우수하였고 Zn-Oxide의 최적 담지량은 60wt%일 때이었다. Zn-Oxide/α-Al2O3 촉매계에 할로겐족 원소가 함유된 알칼리금속 조촉매들을 첨가할 때의 활성순서는 NaBr>NaCl>NaI>NaF 로 나타났으며, 에틸렌의 생성에 Br과Cl 라디칼의 역할이 제시되었지만 NaF 및 알칼리금속염(NaNO3, Li2CO3, KNO3)은 부촉매의 역할을 하였다. NaCl(30wt%)/Zn-Oxide(60wt%)/α-Al2O3 촉매상에서 속도론적 고찰을 통하여, CH3 라디칼의 생성에 관여하는 산소종은 표면상의 이원자산소인 O22- 나 O2- 로 제시할 수 있었고, 활성화에너지는 약 39Kcal/mole 이었다.
The oxidative coupling of methane to ethylene and ethane was studied over Zn-Oxide catalysts with different compositions of catalysts, different supports and promoters. The selectivity for C2(C2H4+C2H6) decreased with an increase in the acid sites of supported catalysts. The Zn-Oxide/α-Al2O3 catalyst without acid sites showed that a good C2(C2H4+C2H6) selectivity. The optimal loading of Zn-Oxide was 60wt%. When alkali halide promoters were added to Zn-Oxide/α-Al2O3, the activity order was NaBr>NaCl>Nal>NaF. Br and Cl radicals might play an important role in formation of ethylene, but NaF and alkali metal salts(NaNO3, Li2CO3, KNO3)played a role of inhibitor. From kinetic studies on oxidative coupling of methane over NaCl(30wt%)/Zn-Oxide(60wt%)/α-Al2O3, the oxygen species responsible for formation of CH3, radical was suggested to be diatomic oxygen(O22- or O2-)on the surface. The activation energy was ca. 39kcal/mole.
References
Lee JS, Oyama ST, Catal. Rev.-Sci. Eng., 30, 249 (1988)
Anderson JR, Appl. Catal., 47, 177 (1989)
Pitchai R, Klier K, Catal. Rev.-Sci. Eng., 28(1), 13 (1986)
Agarwal SK, Migone RA, Marcelin G, Appl. Catal., 53, 71 (1989)
Martin GA, Bates A, Ducarme V, Mirodates C, Appl. Catal., 47, 287 (1989)
Lo MY, Agarwal SK, Marcelin G, J. Catal., 112, 168 (1988)
Roos JA, Korf SJ, Veehof RHJ, Vanommen JG, Ross JRH, Appl. Catal., 52, 131 (1989)
Otsuka K, Liu Q, Hatano M, Morikawa A, Chem. Lett., 903 (1986)
Lane GS, Wolf EE, Proc. 9th Int. Congr. Catal., 2, 944 (1988)
Ito T, Lunsford JH, Nature, 311, 721 (1985)
Yamagata N, Tanaka K, Sasaki S, Okazaki S, Chem. Lett., 81 (1987)
Otsuka K, Jinno K, Morikawa A, J. Catal., 100, 353 (1986)
Keller GE, Bhasin MM, J. Catal., 73, 9 (1982)
Hinsen VW, Baerns M, Chem. Ztg., 107, 223 (1983)
Otsuka K, Hatano M, Komatsu T, Bibby DM, "Methane Conversion," Elsevier, Amsterdam, 383 (1988)
Aika K, Lunsford JH, J. Phys. Chem., 81, 1393 (1977)
Ohtsuka Y, Kuwabara M, Tomita A, Appl. Catal., 47, 307 (1989)
Anshits AG, Sokolovskii VD, React. Kinet. Catal. Lett., 37, 397 (1988)
Zhang HS, Wang JX, Driscoll DJ, Lunsford JH, J. Catal., 112, 366 (1988)
Ito T, Wang JH, Lin CH, Lunsford JH, J. Am. Chem. Soc., 107, 5062 (1985)
Satterfield CN, "Heterogeneous Catalysis in Practice," 1st ed., McGraw-Hill, New York, p. 126 (1980)
Otsuka K, Liu Q, Morikawa A, Inorg. Chem. Acta, 118, L23 (1986)
Hinsen W, Bytyn W, Baerns M, Proc. 8th Int. Congr. Catal., Vol. 3, Dechema, Frankfurt am Main, p. 581 (1984)
Weissman M, Benson SW, Int. J. Chem. Kinet., 16, 307 (1984)
Dean JA, "Langes's Handbook of Chemistry," 12th ed., McGraw-Hill, New York (1979)
Driscoll DJ, Martir W, Wang JX, Lunsford JH, J. Am. Chem. Soc., 107, 58 (1985)
Otsuka K, Jinno K, Inorg. Chim. Acta, 121, 237 (1986)
Anderson JR, Appl. Catal., 47, 177 (1989)
Pitchai R, Klier K, Catal. Rev.-Sci. Eng., 28(1), 13 (1986)
Agarwal SK, Migone RA, Marcelin G, Appl. Catal., 53, 71 (1989)
Martin GA, Bates A, Ducarme V, Mirodates C, Appl. Catal., 47, 287 (1989)
Lo MY, Agarwal SK, Marcelin G, J. Catal., 112, 168 (1988)
Roos JA, Korf SJ, Veehof RHJ, Vanommen JG, Ross JRH, Appl. Catal., 52, 131 (1989)
Otsuka K, Liu Q, Hatano M, Morikawa A, Chem. Lett., 903 (1986)
Lane GS, Wolf EE, Proc. 9th Int. Congr. Catal., 2, 944 (1988)
Ito T, Lunsford JH, Nature, 311, 721 (1985)
Yamagata N, Tanaka K, Sasaki S, Okazaki S, Chem. Lett., 81 (1987)
Otsuka K, Jinno K, Morikawa A, J. Catal., 100, 353 (1986)
Keller GE, Bhasin MM, J. Catal., 73, 9 (1982)
Hinsen VW, Baerns M, Chem. Ztg., 107, 223 (1983)
Otsuka K, Hatano M, Komatsu T, Bibby DM, "Methane Conversion," Elsevier, Amsterdam, 383 (1988)
Aika K, Lunsford JH, J. Phys. Chem., 81, 1393 (1977)
Ohtsuka Y, Kuwabara M, Tomita A, Appl. Catal., 47, 307 (1989)
Anshits AG, Sokolovskii VD, React. Kinet. Catal. Lett., 37, 397 (1988)
Zhang HS, Wang JX, Driscoll DJ, Lunsford JH, J. Catal., 112, 366 (1988)
Ito T, Wang JH, Lin CH, Lunsford JH, J. Am. Chem. Soc., 107, 5062 (1985)
Satterfield CN, "Heterogeneous Catalysis in Practice," 1st ed., McGraw-Hill, New York, p. 126 (1980)
Otsuka K, Liu Q, Morikawa A, Inorg. Chem. Acta, 118, L23 (1986)
Hinsen W, Bytyn W, Baerns M, Proc. 8th Int. Congr. Catal., Vol. 3, Dechema, Frankfurt am Main, p. 581 (1984)
Weissman M, Benson SW, Int. J. Chem. Kinet., 16, 307 (1984)
Dean JA, "Langes's Handbook of Chemistry," 12th ed., McGraw-Hill, New York (1979)
Driscoll DJ, Martir W, Wang JX, Lunsford JH, J. Am. Chem. Soc., 107, 58 (1985)
Otsuka K, Jinno K, Inorg. Chim. Acta, 121, 237 (1986)