Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
무촉매 및 등온 반응조건에서 여러 가지 석탄 챠의 수증기 가스화 반응특성
Kinetics of Non-Catalytic Steam Gasification of Various Coal Chars under Isothermal Condition
HWAHAK KONGHAK, June 1992, 30(3), 292-302(11), NONE
Download PDF
Abstract
국산 무연탄, 중구산 역청탄 및 인도네시아산 갈탄으로부터 얻은 char들과 기준시료인 활성탄을 원료로 사용하여 수증기 가스화 반응을 시키고, 이들의 가스화 반응특성을 비교검토하였다. 가스화 반응은 상압하의 고정층 반응기 내에서 650-1000℃의 온도범위와 0.1-0.7 기압의 수증기 분압범위에서 행하였으며, 가스화 반응속도는 반응의 생성기체를 분석하여 구하였다. 석탄 char의 가스화 반응속도는 미반응 수축핵모델(unreacted shrinking core model)에 잘 일치하였으며, 반응속도는 char의 전환율이 5-15% 일 때 최대였고, 이 때 측정된 표면적도 최대값을 보였다. 탄화도가 낮은 탄종의 char가 저온에서 반응활성이 좋았고, 반응온도가 상승하면서 역청탄의 반응속도가 현저히 증가하였다. CO2/CO, H2/CO 몰비와 CO생성의 활성화에너지는 탄화도가 증가할수록 감소하였다.
Steam gasification of three different coal chars and activated carbon has been carried out in a fixed-bed reactor under the conditions of 650-1000℃ and 0.1-0.7atm of steam. Three sample coale are Korean Jangsung anthracite, Chinese Tatong bituminous and Indonesian lignite. The gasification rate, estima-ted from G.C. analysis of the product gases, increases initially in parallel with the surface area of the reacting char, reaching the maximum when the carbon conversion is about 5-15%. Mechanism of the char gasification is well represented by the unreacted shrinking-core model. Chars of the lower-rank coals exhibit relatively fast gasification rates at low temperatures, but the bituminous coal char shows a significant increase in the gasification rate at higher temperatures. The CO2/CO and H2/CO molar ratios among the products and the activation energy of CO formation decrease with increasing rank of the sample coals.
References
Wen WY, Catal. Rev.-Sci. Eng., 22, 1 (1980)
Fujikawa K, Hayashi A, Tanaka H, Kanazuka T, Kanno T, Kodera T, Appl. Catal., 50, 199 (1989)
Miura K, Hashimoto K, Silveston PL, Fuel, 68, 1461 (1989)
Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25, 160 (1985)
Hashimoto K, Miura K, Xu JJ, Fuel, 65, 489 (1986)
Sha XZ, Kyotani T, Tomita A, Fuel, 69, 1564 (1990)
Wen WY, Ind. Eng. Chem., 60, 34 (1968)
Gavalas GR, AIChE J., 26, 577 (1980)
Adschir T, Furusawa T, Chem. Eng. Sci., 42, 1313 (1987)
Lee IC, Korean J. Chem. Eng., 4(2), 194 (1987)
Hippo EJ, Jenkins RG, Walker PL, Fuel, 58, 338 (1979)
Chin G, Kimura S, Tone S, Otake T, Int. Chem. Eng., 224, 346 (1984)
Kayembe N, Pulsifier AH, Fuel, 55, 211 (1976)
Miura K, Aimi M, Nouto T, Hashimoto K, Fuel, 65, 407 (1986)
Yuh SJ, Wolf EE, Fuel, 62, 252 (1983)
Fung DPC, Kim SD, Fuel, 63, 1197 (1984)
Fujikawa K, Hayashi A, Tanaka H, Kanazuka T, Kanno T, Kodera T, Appl. Catal., 50, 199 (1989)
Miura K, Hashimoto K, Silveston PL, Fuel, 68, 1461 (1989)
Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25, 160 (1985)
Hashimoto K, Miura K, Xu JJ, Fuel, 65, 489 (1986)
Sha XZ, Kyotani T, Tomita A, Fuel, 69, 1564 (1990)
Wen WY, Ind. Eng. Chem., 60, 34 (1968)
Gavalas GR, AIChE J., 26, 577 (1980)
Adschir T, Furusawa T, Chem. Eng. Sci., 42, 1313 (1987)
Lee IC, Korean J. Chem. Eng., 4(2), 194 (1987)
Hippo EJ, Jenkins RG, Walker PL, Fuel, 58, 338 (1979)
Chin G, Kimura S, Tone S, Otake T, Int. Chem. Eng., 224, 346 (1984)
Kayembe N, Pulsifier AH, Fuel, 55, 211 (1976)
Miura K, Aimi M, Nouto T, Hashimoto K, Fuel, 65, 407 (1986)
Yuh SJ, Wolf EE, Fuel, 62, 252 (1983)
Fung DPC, Kim SD, Fuel, 63, 1197 (1984)