Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Lignocellulose의 당화와 고정화 효모에 의한 에탄올발효
Saccharification of Lignocellulose and Ethanol Fermentation by Immobilized Yeast
HWAHAK KONGHAK, October 1992, 30(5), 559-563(5), NONE
Download PDF
Abstract
Solka floc BW 200과 폐지와 같은 섬유소원을 Trichoderma 기원의 셀룰라아제와 고정화 효모를 이용해 에탄올로 전환시키고자 하였다. 본 연구의 목적은 동시당화와 발효공정을 통해 생성물 억제를 줄이고 유동층 반응기를 사용하여 고정화 효모의 생화학적 물질대사를 조절하여 에탄올의 생산성을 높이고자 하였다. 효모를 당화시작후 30시간에 접종했을 때, 당화와 동시 발효반응 1시간 후 포도당의 농도가 일시적으로 증가하였다가 에탄올 발효가 활발히 일어나 포도당의 양이 급격히 감소하였다. 또한 당화 공정 중 포도당 및 에탄올을 첨가했을 때 당화반응이 저해됨을 알 수 있었다. 유동층 반응기에서 회분식 첨가 배양과 반회분식 배양을 사용하여 회분식 배양보다 에탄올의 생성량을 높일 수 있었다.
The conversion of cellulose and lignocellulose such as solka floc BW 200 and waste paper into ethanol using Trichoderma reesei cellulase and immobilized yeast was investigated. The object of this study is to decrease the product inhibition by performing simultaneous saccharification and fermentation(SSF), and is to control the biochemical metabolism of immobilized yeast by using fluidized-bed reactor, thus produ-cing high productivity of ethanol. When the yeast was inoculated after 30 hours of the saccharification process, glucose concentration was increased temporarily after 1hour of SSF and decreased rapidly by ethanol fermen-tation. And it was found that the saccharification was inhibited by the addition of glucose or ethanol. Fed-batch or semi-batch fermentation in the fluidized-bed reactor was more favorable than batch fermentation for ethanol production.
References
Ladisch MR, Lin KW, Voloch M, Tsao GT, Enzyme Microb. Technol., 5, 82 (1983)
Fan LT, Lee YH, Beardmore DH, Biotechnol. Bioeng., 22, 177 (1980)
Mandels M, Hontz L, Nystrom J, Biotechnol. Bioeng., 16, 1471 (1974)
Bailey MJ, Nevalainem KMH, Enzyme Microb. Technol., 3, 153 (1981)
Blotkamp PJ, Biochem. Res., 85 (1978)
Bisaria VS, Ghose TK, Enzyme Microb. Technol., 3, 90 (1981)
Saski T, Tanaka T, Narbu N, Sato Y, Kainum K, Biotechnol. Bioeng., 21, 1031 (1979)
Ooshima H, Ishitani Y, Harano Y, Biotechnol. Bioeng., 27, 389 (1985)
Punnapayak H, Emert GH, Biotechnol. Lett., 8, 63 (1986)
Hueng SY, Chen JC, J. Ferment. Technol., 66, 509 (1988)
Miller GL, Anal. Chem., 31, 426 (1959)
Bergmeyer HU, "Method of Enzymatic Analysis," Vol. 1, p. 457, 2nd Ed. (1984)
Kosaric N, Wieczorek A, Cosentino GP, Magee RJ, Prenosil JE, "Biotechnology," Vol. 3, Ch. 3a, Ethanol Fermentation, Edited by Dellweg, H., Verlag-Chemie, Weinhein (1983)
Fan LT, Lee YH, Beardmore DH, Biotechnol. Bioeng., 22, 177 (1980)
Mandels M, Hontz L, Nystrom J, Biotechnol. Bioeng., 16, 1471 (1974)
Bailey MJ, Nevalainem KMH, Enzyme Microb. Technol., 3, 153 (1981)
Blotkamp PJ, Biochem. Res., 85 (1978)
Bisaria VS, Ghose TK, Enzyme Microb. Technol., 3, 90 (1981)
Saski T, Tanaka T, Narbu N, Sato Y, Kainum K, Biotechnol. Bioeng., 21, 1031 (1979)
Ooshima H, Ishitani Y, Harano Y, Biotechnol. Bioeng., 27, 389 (1985)
Punnapayak H, Emert GH, Biotechnol. Lett., 8, 63 (1986)
Hueng SY, Chen JC, J. Ferment. Technol., 66, 509 (1988)
Miller GL, Anal. Chem., 31, 426 (1959)
Bergmeyer HU, "Method of Enzymatic Analysis," Vol. 1, p. 457, 2nd Ed. (1984)
Kosaric N, Wieczorek A, Cosentino GP, Magee RJ, Prenosil JE, "Biotechnology," Vol. 3, Ch. 3a, Ethanol Fermentation, Edited by Dellweg, H., Verlag-Chemie, Weinhein (1983)