Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
흡착성 고체입자의 슬러리에 CO2 기체 흡수
Gas Absorption of CO2 into Slurry of Fine Adsorptive Particle
HWAHAK KONGHAK, August 1993, 31(4), 457-465(9), NONE
Download PDF
Abstract
25℃, 1 atm에서 준 회분식 교반조 흡수기를 사용하여 activated carbon, white carbon 및 용융 alumina의 슬러리에 흡수시킨 CO2 기체의 흡수속도를 측정하여 Danckwerts의 plot방법을 사용하여 CO2 기체의 액상측 물질전달계수를 구하였다. 슬러리에 CO2 기체의 포화농도와 고체입자의 부피분율은 선형관계가 성립하였으며, 이 선형관계식으로부터 activated carbon 및 용융 alumina의 흡착평형상수를 구하였으며, 그 값은 각각 57.4, 4.35 및 0이었다. 측정한 액상측 물질전달게수를 사용하여 슬러리농도 증가에 따라 증가한 흡수속도 촉진계수를 표면갱신설로서 해석하였다. 입자의 크기에 따라 나타난 흡수촉진현상을 표면갱신속도를 사용한 왕복 메카니즘으로 설명하였다.
The adsorption of carbon dioxide into slurry was carried out using a stirred absorber in the presence of solid particles like activated carbon, white carbon and fused alumina at 25℃ and 1 atm. The liquid-side mass transfer coefficient of CO2 gas could be obtained using the Danckwerts’plot with the experimental absorption rates. The adsorption equilibrium between the dissolved gas in the solution and the adsorbed gas onto the surfaces of solid particles was instantaneously attained linearly, and the adsorption equilibrium constants of activated carbon, white carbon and fused alumina were 57.4, 4.75 and 0, respectively. The surface renewal model modified with the shuttle mechanism could explain the enhancement phenomena of absorption rates into slurry of the particles smaller than or equal to the liquid thickness calculated by the film theory.
References
Ramachandran PA, Sharma MM, Chem. Eng. Sci., 24, 1681 (1969)
Uchida S, Koide K, Shindo M, Chem. Eng. Sci., 30, 644 (1975)
Uchida S, Koide K, Wen CY, Chem. Eng. Sci., 32, 447 (1977)
Sada E, Kumazawa H, Butt MA, Chem. Eng. Sci., 32, 1165 (1977)
Niiyama H, Smith JM, AIChE J., 23, 592 (1977)
Uchida S, Moriguchi H, Maejima H, Koide K, Kageyma S, Can. J. Chem. Eng., 56, 690 (1978)
Sada E, Kumazawa H, Butt MA, Chem. Eng. Sci., 34, 715 (1979)
Joosten GEH, Schilder JGM, Janssen JJ, Chem. Eng. Sci., 32, 563 (1977)
Kars RL, Best RJ, Brinkenburg AH, Chem. Eng. J., 17, 201 (1979)
Sylvester ND, Dianat S, Ind. Eng. Chem. Process Des. Dev., 19, 199 (1980)
Miyachi M, Iguchi A, Uchida S, Koide K, Can. J. Chem. Eng., 59, 640 (1981)
Ptasinski KJ, vanSwaaij WPM, Chem. Eng. Sci., 41, 1943 (1986)
Nagy E, Blickle T, Ujhidy A, Chem. Eng. Sci., 41, 2193 (1986)
Quicker G, Alper E, Decker WD, AIChE J., 33, 871 (1987)
Holstvoogd RD, vanSwaaij WPM, vanDirendock LL, Chem. Eng. Sci., 43, 2181 (1988)
Quicker G, AlperE, Decker WD, Can. J. Chem. Eng., 67, 32 (1989)
Karve S, Juvecar VA, Chem. Eng. Sci., 45, 587 (1990)
Mehra A, Chem. Eng. Sci., 45, 1525 (1990)
Park SW, Kim SS, Kim JH, HWAHAK KONGHAK, 28(1), 52 (1990)
Park SW, Kim SS, Han SB, HWAHAK KONGHAK, 28(3), 327 (1990)
Park SW, Kim SS, HWAHAK KONGHAK, 28(4), 379 (1990)
Danckwerts PV, Ind. Eng. Chem., 43, 1460 (1951)
Alper E, Deckwer WD, Danckwerts PV, Chem. Eng. Sci., 35, 1263 (1980)
Danckwerts PV, "Gas-Liquids Reactions," McGraw-Hill, New York, NY, p. 109 (1970)
Roberts D, Danckwerts PV, Chem. Eng. Sci., 17, 961 (1962)
Danckwerts PV, "Gas-Liquids Reactions," McGraw-Hill, New York, NY, p. 18 (1970)
Thomas WJ, Adams MJ, Trans. Faraday Soc., 61, 668 (1965)
Uchida S, Koide K, Shindo M, Chem. Eng. Sci., 30, 644 (1975)
Uchida S, Koide K, Wen CY, Chem. Eng. Sci., 32, 447 (1977)
Sada E, Kumazawa H, Butt MA, Chem. Eng. Sci., 32, 1165 (1977)
Niiyama H, Smith JM, AIChE J., 23, 592 (1977)
Uchida S, Moriguchi H, Maejima H, Koide K, Kageyma S, Can. J. Chem. Eng., 56, 690 (1978)
Sada E, Kumazawa H, Butt MA, Chem. Eng. Sci., 34, 715 (1979)
Joosten GEH, Schilder JGM, Janssen JJ, Chem. Eng. Sci., 32, 563 (1977)
Kars RL, Best RJ, Brinkenburg AH, Chem. Eng. J., 17, 201 (1979)
Sylvester ND, Dianat S, Ind. Eng. Chem. Process Des. Dev., 19, 199 (1980)
Miyachi M, Iguchi A, Uchida S, Koide K, Can. J. Chem. Eng., 59, 640 (1981)
Ptasinski KJ, vanSwaaij WPM, Chem. Eng. Sci., 41, 1943 (1986)
Nagy E, Blickle T, Ujhidy A, Chem. Eng. Sci., 41, 2193 (1986)
Quicker G, Alper E, Decker WD, AIChE J., 33, 871 (1987)
Holstvoogd RD, vanSwaaij WPM, vanDirendock LL, Chem. Eng. Sci., 43, 2181 (1988)
Quicker G, AlperE, Decker WD, Can. J. Chem. Eng., 67, 32 (1989)
Karve S, Juvecar VA, Chem. Eng. Sci., 45, 587 (1990)
Mehra A, Chem. Eng. Sci., 45, 1525 (1990)
Park SW, Kim SS, Kim JH, HWAHAK KONGHAK, 28(1), 52 (1990)
Park SW, Kim SS, Han SB, HWAHAK KONGHAK, 28(3), 327 (1990)
Park SW, Kim SS, HWAHAK KONGHAK, 28(4), 379 (1990)
Danckwerts PV, Ind. Eng. Chem., 43, 1460 (1951)
Alper E, Deckwer WD, Danckwerts PV, Chem. Eng. Sci., 35, 1263 (1980)
Danckwerts PV, "Gas-Liquids Reactions," McGraw-Hill, New York, NY, p. 109 (1970)
Roberts D, Danckwerts PV, Chem. Eng. Sci., 17, 961 (1962)
Danckwerts PV, "Gas-Liquids Reactions," McGraw-Hill, New York, NY, p. 18 (1970)
Thomas WJ, Adams MJ, Trans. Faraday Soc., 61, 668 (1965)