Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
알칼리형 연료전지에서 산소환원에 대한 은촉매의 활성
Catalytic Activity of Silver on Oxygen Reduction for Alkaline Fuel Cell
HWAHAK KONGHAK, August 1993, 31(4), 475-482(8), NONE
Download PDF
Abstract
은염의 환원법으로 순수한 은(Ag)과 전이금속을 첨가한 은(이하, doped Ag)촉매를 제조하여, 산소 화학흡착법과 전기화학적 측정(산소의 환원 전류 측정)법으로 촉매능을 비교한 결과 이 두 실험결과가 비교적 잘 일치하였으며, 순수 은보다 doped Ag촉매가 보다 우수한 촉매능을 나타내었다. Doped Ag촉매를 사용한 전극에서 전극성능의 주된 향상원인은 dopant에 의한 촉매 입자의 응집억제 효과 때문이었다. 은촉매중 Ag-Fe, Ag-Pt 그리고 Ag-Bi-Ni-Ti가 우수한 산소환원 전류밀도를 나타내었는데, 순수 은촉매를 사용한 산소전극의 전류밀도는 약 63 mA/cm2이었고, Ag-Fe는 160 mA/cm2이였다.
Pure silver catalyst and silver catalysts doped with transition metals were prepared by reduction of the silver salt. Oxygen chemisorption and electrochemical measurement(to measure oxygen reduction current)methods were employed to investigate the activity of catalysts, and two experimental results showed a good agreement relatively. In the aspect of catalytic activity, doped Ag catalysts were superior to pure silver catalyst. It was thought that the improvement of electrode preformance on doped Ag catalysts was mainly due to the reaction region increase by adding dopant. Among the Ag catalysts, Ag-Fe, Ag-Pt and Ag-Bi-Ni-Ti showed better electrode preformance than the others. The current density of Ag catalyst was about 63 mA/cm2, but that of Ag-Fe was about 160 mA/cm2.
References
Bacon FT, Electrochim. Acta, 14, 569 (1969)
Cameron DS, Platinum Metal Rev., 34(1), 26 (1990)
Appleby AJ, J. Power Sources, 29, 3 (1990)
Couturier G, Kirk DW, Hyde PJ, Srinivasan S, Electrochim. Acta, 32(7), 995 (1987)
Strasser K, J. Power Sources, 29, 149 (1990)
Yeager E, Electrochim. Acta, 29(11), 1527 (1984)
Mcdougall AO, "Fuel Cell," p. 54, Macmillan Press Ltd., London (1976)
Hohne K, Siemens Forsch u Entwickl. Ber. Bd., 1, 3 (1974)
Tseung ACC, Hobbs BS, Tantram ADS, Electrochim. Acta, 15, 473 (1970)
Backx C, Moolhuysen J, Geenen P, VanSanten RA, J. Catal., 72, 364 (1981)
Wu JC, Harriott P, J. Catal., 39, 395 (1975)
Lemaitre JL, Menon PG, Delannay F, "Characterization of Heterogeneous Catalysts," (Delannay, F., Eds), p. 314, Marcel Dekker, NY (1984)
Lu PWT, Srinivasan S, J. Electrochem. Soc., 125(2), 265 (1978)
Dirkse TP, Electrochim. Acta, 34(5), 647 (1989)
Bevan HL, Tseung ACC, Electrochim. Acta, 9, 201 (1974)
Winsel A, Richter GJ, "Electrochemical Hydrogen Technologies," (Wendt, H., eds.), p. 381-393, Elsevier, Amsterdam (1990)
Cameron DS, Platinum Metal Rev., 34(1), 26 (1990)
Appleby AJ, J. Power Sources, 29, 3 (1990)
Couturier G, Kirk DW, Hyde PJ, Srinivasan S, Electrochim. Acta, 32(7), 995 (1987)
Strasser K, J. Power Sources, 29, 149 (1990)
Yeager E, Electrochim. Acta, 29(11), 1527 (1984)
Mcdougall AO, "Fuel Cell," p. 54, Macmillan Press Ltd., London (1976)
Hohne K, Siemens Forsch u Entwickl. Ber. Bd., 1, 3 (1974)
Tseung ACC, Hobbs BS, Tantram ADS, Electrochim. Acta, 15, 473 (1970)
Backx C, Moolhuysen J, Geenen P, VanSanten RA, J. Catal., 72, 364 (1981)
Wu JC, Harriott P, J. Catal., 39, 395 (1975)
Lemaitre JL, Menon PG, Delannay F, "Characterization of Heterogeneous Catalysts," (Delannay, F., Eds), p. 314, Marcel Dekker, NY (1984)
Lu PWT, Srinivasan S, J. Electrochem. Soc., 125(2), 265 (1978)
Dirkse TP, Electrochim. Acta, 34(5), 647 (1989)
Bevan HL, Tseung ACC, Electrochim. Acta, 9, 201 (1974)
Winsel A, Richter GJ, "Electrochemical Hydrogen Technologies," (Wendt, H., eds.), p. 381-393, Elsevier, Amsterdam (1990)