Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
2차 공기가 주입되는 유동층에서 고체입장의 비산
Particle Entrainment in a fluidized Bed with Secondary Air Injection
HWAHAK KONGHAK, June 1994, 32(3), 489-497(9), NONE
Download PDF
Abstract
공기 분배기로부터 0.2m 높이에 2차 공기가 공급되는 상온 유동층(직경 0.1m, 높이 2.4m)에서 입자 비산속도를 측정 및 고찰하였다. 층물질로는 체규격 0.5mm 이하의 모래가 사용되었다. 실험변수로는 입도(0.128-0.363mm), 총괄유곡(0.76-2.77m/s), 2차 공기분율(0-0.5), 고정층 높이(0.1-0.3m)가 변화되었다. 입자 비산속도는 유속이 증가할수록 입경이 감소할수록 증가하였다. 고정층 높이의 영향은 미약하였다. 2차 공기분율의 증가는 입자 비산속도를 감소시켰다. 이 영향은 2차 공기의 주입위치에 따라 다르며, 층내부일 경우에는 작으나, 프리보드일 경우에는 두드러졌다.
The particle entrainment rate was measured and discussed in a cold model fluidized bed(0.1m-ID, 2.4m-height) which employed a secondary air injection at a height of 0.2m above the distributor plate. Sand particles of mixed sizes under 0.5mm in screen size were used as bed materials. The particle size(0.128-0.363mm), the overall superficial gas velocity(0.76-2.77m/s), the secondary air fraction(0-0.5), and the static bed height(0.1-0.3m) were considered as experimental variables. The entrainment rate increased with the gas velocity, but with a decrease of particle size. The effect of static bed height was negligible. The entrainment rate decreased with an increase of the proportion of secondary air. The effect of secondary air fraction was appreciable for over-bed injection and was reduced as the location of second gas inlet moved toward in-bed.
References
Geldart D, "Fluidization," edited by Davidson, J.F., Clift, R. and Harrison, D., Academic Press, London, 383 (1985)
Choi JH, Son JE, Kim SD, J. Chem. Eng. Jpn., 22, 597 (1989)
Wang XS, Gibbs BM, "Circulating Fluidized Bed Technology III," edited by P. Basu, M. Horio and M. Hasatani, Pergamon Press, Oxford, 225 (1991)
Arena U, Cammarota A, Marzocchella A, Massimilla L, Proc. of the 12th Int. Conf. and Fluidized Bed Combustion, 899 (1993)
Arena U, Marzocchella A, Bruzzi V, Massimilla L, Preprint Volume for the 4th Int. Conf. on Circulating Fluidized Beds, 660 (1993)
Baskakov AP, Maskaev VK, Usoltsev AG, Ivanov IV, Zubkov VA, Preprint Volume for the 4th Int. Conf. on Circulating Fluidized Beds., 380 (1993)
Brereton CMH, Grace JR, Preprint Volume for the 4th Int. Conf. on Circulating Fluidized Beds, 169 (1993)
Cho YJ, Namkung W, Kim SD, Park SW, J. Chem. Eng. Jpn., 27(2), 158 (1994)
Wu S, Alliston M, Proc. of the 12th Int. Conf. on Fluidized Bed Combustion, 1003 (1993)
Kunii D, Levenspiel O, "Fluidization Engineering," 2nd ed., Butterworth-Heinemann, 95 (1991)
Zenz FA, Weil NA, AIChE J., 4, 472 (1958)
Soroko VE, Mikhalev MF, Mukhlenov IP, Int. Chem. Eng., 9, 280 (1969)
Yoon YS, "Entrainment of Coal in Fluidized Beds," Master Thesis, Korea Advanced Institute of Science and Technology, Seoul, Korea (1981)
Baron T, Briens CL, Galtier P, Bergougnou MA, Powder Technol., 63, 149 (1990)
Yagi S, Aochi T, Paper presented at Soc. Chem. Engrs. (Japan) Spring Meeting (1955)
Wen CY, Hashinger RF, AIChE J., 6, 220 (1960)
Tanaka I, Shinohara H, Hirosue H, Tanaka Y, J. Chem. Eng. Jpn., 5, 51 (1972)
Merrick D, Highley J, AIChE Symp. Ser., 70, 366 (1974)
Choi JH, Son JE, Kim SD, J. Chem. Eng. Jpn., 22, 597 (1989)
Wang XS, Gibbs BM, "Circulating Fluidized Bed Technology III," edited by P. Basu, M. Horio and M. Hasatani, Pergamon Press, Oxford, 225 (1991)
Arena U, Cammarota A, Marzocchella A, Massimilla L, Proc. of the 12th Int. Conf. and Fluidized Bed Combustion, 899 (1993)
Arena U, Marzocchella A, Bruzzi V, Massimilla L, Preprint Volume for the 4th Int. Conf. on Circulating Fluidized Beds, 660 (1993)
Baskakov AP, Maskaev VK, Usoltsev AG, Ivanov IV, Zubkov VA, Preprint Volume for the 4th Int. Conf. on Circulating Fluidized Beds., 380 (1993)
Brereton CMH, Grace JR, Preprint Volume for the 4th Int. Conf. on Circulating Fluidized Beds, 169 (1993)
Cho YJ, Namkung W, Kim SD, Park SW, J. Chem. Eng. Jpn., 27(2), 158 (1994)
Wu S, Alliston M, Proc. of the 12th Int. Conf. on Fluidized Bed Combustion, 1003 (1993)
Kunii D, Levenspiel O, "Fluidization Engineering," 2nd ed., Butterworth-Heinemann, 95 (1991)
Zenz FA, Weil NA, AIChE J., 4, 472 (1958)
Soroko VE, Mikhalev MF, Mukhlenov IP, Int. Chem. Eng., 9, 280 (1969)
Yoon YS, "Entrainment of Coal in Fluidized Beds," Master Thesis, Korea Advanced Institute of Science and Technology, Seoul, Korea (1981)
Baron T, Briens CL, Galtier P, Bergougnou MA, Powder Technol., 63, 149 (1990)
Yagi S, Aochi T, Paper presented at Soc. Chem. Engrs. (Japan) Spring Meeting (1955)
Wen CY, Hashinger RF, AIChE J., 6, 220 (1960)
Tanaka I, Shinohara H, Hirosue H, Tanaka Y, J. Chem. Eng. Jpn., 5, 51 (1972)
Merrick D, Highley J, AIChE Symp. Ser., 70, 366 (1974)