Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고농도 유기 폐수 처리를 위한 펄스 유동식 혐기성 Biofileter의 설계 및 시운전
Pulsewise-Fluidized Anaerobic Biofilter Design and Start-up for High Concentration Organic Wastewater Treatment
HWAHAK KONGHAK, August 1994, 32(4), 533-540(8), NONE
Download PDF
Abstract
고농도 유기 폐수의 생물학적 처리를 위하여 미생물을 담체에 고정하여 운전하는 생물반응기를 개발하였다. 이 반응기는 상승된 액체의 위치에너지를 이용하여 액체의 낙하시 turbulence를 유발하여 혼합을 시킨다. 미생물을 고정하는 담체로는 carbon black이 포함된 폴리우레탄 다공성 담체를 사용하였다. 폐수의 반응기내 체류시간을 초기의 15일에서 1.5일까지 변화시키면서 100일 동안 실험한 결과 용존 COD 기준 제거율이 86-95%의 효율을 보였다. COD 부하면에서 볼 때 폴리우레탄 다공성 담체에 고정한 경우 11kg COD/㎥ d에서도 90% 이상의 제거율을 보여 안정된 처리 성능을 보였다. 이것은 기존의 혐기성 소화조의 COD 제거 성능에 비해서 10배 이상 향상된 것이다.
A now bioreactor(biofilter) which uses immobilized microorganisms was developed for the biological treatment of high concentration organic wastewater. Polyurethane foams with carbon black were used for the support of microorganisms. The content in the biofilter is mixed by the turbulence generated by the falling wastewater which has potential energy. During the 100 days experiment wastewater residence time was varied from 15 day to 1.5 day and soluble COD removals were 86-95%. In terms of COD load polyurethane foams showed 11kg COD/㎥.d, with 90% COD removal. This biofilter showed more than 10times performance in COD removal than conventional anaerobic digestion.
References
Ghosh S, Klass DL, Process Biochem., 64, 15 (1978)
Zitomer DH, Speece RE, Environ. Sci. Technol., 27, 226 (1993)
Young JC, McCarty PL, J. Water Poll. Control. Fed., 41, 160 (1969)
Young JC, Yang BS, J. Water Poll. Control. Fed., 61, 1576 (1989)
Switzenbaum MS, J. Water Poll. Control. Fed., 54, 592 (1982)
Howerton DE, Young JC, J. Water Poll. Control. Fed., 59, 788 (1987)
Nakhla GF, Suldan MT, J. Environ. Eng.-ASCE, 118, 495 (1992)
Kennedy KJ, Hamoda MF, Droste RL, J. Water Poll. Control. Fed., 59, 212 (1987)
Jewell WJ, Nelson YM, Wilson MS, Water Environ. Res., 64, 756 (1992)
Hwang KY, Doktor-Ingenieur, Berlin (1986)
Clesceri LS, Greenberg AE, Trussell RR, "Standard Methods for the Examination of Water and Wastewater," American Public Health Association (1989)
Dr. Lange: "Handbuch Manuel Digital-Photometer LPIW," Dr. Bruno Lange GmbH-Berlin (1987)
Zitomer DH, Speece RE, Environ. Sci. Technol., 27, 226 (1993)
Young JC, McCarty PL, J. Water Poll. Control. Fed., 41, 160 (1969)
Young JC, Yang BS, J. Water Poll. Control. Fed., 61, 1576 (1989)
Switzenbaum MS, J. Water Poll. Control. Fed., 54, 592 (1982)
Howerton DE, Young JC, J. Water Poll. Control. Fed., 59, 788 (1987)
Nakhla GF, Suldan MT, J. Environ. Eng.-ASCE, 118, 495 (1992)
Kennedy KJ, Hamoda MF, Droste RL, J. Water Poll. Control. Fed., 59, 212 (1987)
Jewell WJ, Nelson YM, Wilson MS, Water Environ. Res., 64, 756 (1992)
Hwang KY, Doktor-Ingenieur, Berlin (1986)
Clesceri LS, Greenberg AE, Trussell RR, "Standard Methods for the Examination of Water and Wastewater," American Public Health Association (1989)
Dr. Lange: "Handbuch Manuel Digital-Photometer LPIW," Dr. Bruno Lange GmbH-Berlin (1987)