ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

에틸렌 수소화 반응에서 다중성의 존재 가능성에 대한 이론적 연구

Theoretical Study on the Possible Existence of Multiplicity Features in Ethylene Hydrogenation

HWAHAK KONGHAK, December 1994, 32(6), 765-777(13), NONE
downloadDownload PDF

Abstract

에틸레 수소화 반응에 대해서 발화점과 소멸점을 가지는 다중 현상의 존재 가능성을 열 및 물질 전달 제한이 배제된 순수한 속도 영역에서 이론적으로 조사하였다. 그리고 여러 연구들에 의해서 속도론적으로 다중 정상상태가 가능하다고 밝혀진 CO 산화 반응과 비교하였다. 이론 및 수치 해석으로부터 에틸렌 수소화 반응에서 다중성의 존재 가능성에 대해서 다음과 같은 결과를 보여준다. 즉, 에틸렌 한 분자가 2개 이상의 활성점에 강하게 흡착하면 다중현상은 얻어질 수 없다. 본 흡착 실험과 다른 연구들로부터, 에틸렌의 화학 흡착은 한 분자당 3-4개의 활성점을 요구하며 수소보다 강하게 흡착을 한다는 사실로부터 속도론적으로 다중성이 존재할 수 있다고 본다. 본 연구로부터 Langmuir-Hinshelwood 메카니즘을 따라 진행되는 반응에서, 각 반응물들의 흡착에서 촉매 활성점과의 화학적 결합수보다는 기하학적으로 점령하는 활성점 수가 다중성의 존재에 중요한 영향을 미친다고 밝혀졌다.
The possible existence of multiplicity features, including ignition and extinction phenomena, is theoretically examined for ethylene hydrogenation in the kinetic region with the exclusion of heat and mass transfer limitations, and then the ethylene hydrogenation is compared with CO oxidation for which it has been claimed in several studies that multiple steady states can come from a purely kinetic process. From both theoretical and numerical analyses, it is concluded that if each chemisorbed ethylene occupies less than two active sites of catalyst more strongly than hydrogen the multiple steady states can exist, but the multiplicity features can not be obtained if an ethylene molecule adsorbs strongly upon more than two active sites. From our experiment and another studies for chemisorptions, it is confirmed that the chemisorption of ethylene requires geometrically 3-4 active sites per each molecule and that is much more strong than one of hydrogen. Therefore, the existence of kinetically induced multiplicity will not be possible for ethylene hydrogenation. On the other hand, the kinetically induced multiplicity for CO oxidation will arise from the fact that carbon monoxide chemisorbs more strongly than oxygen upon less than two active sites. In our study, it is found that the number of geometrically occupied active sites rater than the chemical bonding number in the chemical bonding number in the chemisorption of reactants might exert an important influence on the existence of the multiplicity features in the reaction proceeding via Langmuir-Hinshelwood mechanism.

Keywords

References

Endo I, Furusawa T, Matsuyama H, Catal. Rev.-Sci. Eng., 18, 297 (1978)
Eigenberger G, Chem. Eng. Sci., 33, 1263 (1978) 
Eigenberger G, Int. Chem. Eng., 21, 17 (1981)
Takoudis CG, Schmidt LD, Aris R, Chem. Eng. Sci., 36, 1795 (1981) 
Takoudis CG, Schmidt LD, Aris R, Chem. Eng. Sci., 36, 377 (1981) 
Kang KS, Ihm SK, Korean J. Chem. Eng., 6(1), 46 (1989)
Uppal A, Ray WH, Chem. Eng. Sci., 31, 205 (1976) 
Kubicek M, Hofmann H, Hlavacek V, Sinkule J, Chem. Eng. Sci., 35, 987 (1980) 
Svoronos S, Aris R, Stephanopoulos G, Chem. Eng. Sci., 37, 357 (1982) 
Morbidelli M, Varma A, Chem. Eng. Sci., 36, 1211 (1981) 
Pereira CJ, Carberry JJ, Varma A, Chem. Eng. Sci., 34, 249 (1979) 
Lin KF, J. Chem. Eng. Jpn., 13, 292 (1980)
Gray P, Scott SK, Chem. Eng. Sci., 39, 1087 (1984) 
Uppal A, Ray WH, Chem. Eng. Sci., 32, 649 (1977) 
Matsuura T, Kato M, Chem. Eng. Sci., 22, 171 (1967) 
Hegedus LH, Oh SH, Baron K, AIChE J., 23, 632 (1977) 
Pereira CJ, Wang JB, Varma A, AIChE J., 25, 1036 (1979) 
Vega JM, Linan A, Chem. Eng. Sci., 34, 1319 (1979) 
Jorgensen DV, Farr WW, Aris R, Chem. Eng. Sci., 39, 1741 (1984) 
Razon LF, Schmitz RA, Catal. Rev.-Sci. Eng., 28, 89 (1986)
Beusch H, Fieguth P, Wicke E, Adv. Chem. Ser., 109, 615 (1972)
Beusch H, Fieguth P, Wicke E, Chem. Ing. Tech., 44, 445 (1972) 
Kunimori K, Uchijima T, Yamada M, Matsumoto H, Hattori T, Murakami M, Appl. Catal., 22, 115 (1986) 
Frusawa TH, Kunii DJ, Chem. Eng. J., 4, 274 (1971)
Han DH, Park OO, Kim YG, Appl. Catal., 86, 71 (1992) 
Denn MM, "Stability of Reaction and Transfer Process," Prentice-Hall, Englewood Cliffs, N.J. (1975)
Nicolis G, Prigogine I, "Self-Organization in Nonequilibrium Systems," John Wiley & Sons, New York (1977)
Soma Y, J. Catal., 59, 239 (1979) 
Masi M, Sangalli M, Carra S, Cao G, Mordidelli M, Chem. Eng. Sci., 43, 1849 (1988) 
Horiuti J, Polanyi M, Trans. Faraday Soc., 30, 1164 (1934) 
Kuester JL, Mize JH, "Optimization Techniques with Fortran," McGraw-Hill, New York (1973)
Carnahan B, Luther HA, Wilkes JO, "Applied Numerical Methods," John Wiley & Sons, New York (1969)
Soma Y, J. Chem. Soc.-Chem. Commun., 1004 (1976)
Beebe ER, Yates J, J. Am. Chem. Soc., 108, 663 (1986) 
Albert MR, Sneddon LG, Surf. Sci., 120, 19 (1982) 
Steininger H, Ibach HE, Lehwald S, Surf. Sci., 117, 685 (1982) 
Morrow BA, Sheppard N, J. Phys. Chem., 70, 2406 (1966)
Beeck O, Smith AE, Wheeler A, Proc. Roy. Soc. A, 177, 62 (1940)
Sabatier P, "La Catalye en Chimie Organique," Lib. Polytechnic., Paris
Smith DL, Merrill RP, J. Chem. Phys., 52, 5861 (1970) 
Stair PC, Somorjai GA, J. Chem. Phys., 66, 2036 (1977) 
Harnsberger HF, McClellan AL, J. Colloid Interface Sci., 23, 577 (1967) 
Spenadel L, Boudart M, J. Chem. Phys., 66, 48 (1962) 
Renouprez A, Hoang-Van C, Compagnon PA, J. Catal., 34, 411 (1974) 
Wilson GR, Hall WK, J. Catal., 17, 190 (1970) 
Hall WK, Lutinski FE, J. Catal., 2, 518 (1963) 
Poltorak OM, Boronin VS, Russ. J. Phys. Chem., 39, 781 (1965)
Nishiyama Y, Wise H, J. Catal., 32, 50 (1974) 
Yates DJC, Sinfelt JH, J. Catal., 14, 182 (1969) 
Sinfelt JH, Annu. Rev. Mater. Sci., 2, 641 (1972) 
Gruber H, J. Phys. Chem., 66, 48 (1963)
Komers R, Amenomiya Y, Cvetanovic RJ, J. Catal., 15, 293 (1969) 
Cormack D, Moss RL, J. Catal., 13, 1 (1969) 
Freel J, Catalysis, 25, 149 (1972) 
Isaacs BH, Petersen EE, J. Catal., 85, 1 (1984) 
Serrano CC, Wolf EE, Caberry JJ, J. Catal., 52, 507 (1978) 
Palazov A, Bonev C, Shopov D, Lietz G, Sarkany A, Volter J, J. Catal., 103, 249 (1987) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로