Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
알칼리형 연료전지의 Raney Ni 수소극 성능
The Performance of Raney Ni Hydrogen Electrode for Alkaline Fuel Cell
HWAHAK KONGHAK, December 1994, 32(6), 784-791(8), NONE
Download PDF
Abstract
Raney Ni 촉매와 PTFE 분말을 사용하여 반혐수성 이층구조의 다공성 수소전극을 제작하여 분극특성을 조사하였다. 촉매층의 최적 PTFE 분말 첨가량은 25wt%였다. Ni 전극에 비해 Raney Ni 전극의 성능은 월등히 뛰어났고, dopant가 첨가되지 않은 Raney Ni 전극들의 성능은 비슷하였다. Raney Ni 촉매제조시 dopant로써 Mo을 9wt% 첨가함으로써 촉매활성을 향상시킬 수 있었으며 이 촉매로 제작한 전극은 비교적 안정한 전극성능을 나타내었다. 범람응집모델에 적합하도록 전극구조를 개선하여 전극성능을 향상시킬 수 있었는데, 촉매층 제작의 적절한 조건은 발수처리된 촉매분말과 미 발수처리된 촉매분말의 비가 5:1일 때가 적당하였다.
The polarization characteristics of semihydrophobic double-layered porous hydrogen electrode manufactured with Raney Ni and PTFE powder was investigated. The optimum PTFE powder content in the catalyst layer was 25wt%. Compared the electrode performance of Raney Ni with Ni, the former was by far better than the latter. There was little electrode performance difference among various Raney Ni electrodes with out dopant. The activity of Raney Ni was improved by adding 9 wt% Mo power as dopant, and the electrode composed of this catalyst showed relatively a stable electrode performance. It was possible to improve the anodic performance of Raney Ni electrode by modifying the electrode structure according to the flooded agglomerate model. The preferred condition for the preparation of Raney Ni catalyst layer was mixing the water repellent catalyst with non-treated hydrophilic catalyst at the ratio of 5 to 1.
References
Despic AR, Drazic OM, Petrovic CM, Vujcic V, J. Electrochem. Soc., 1109, 111 (1914)
Niedrach LW, Alford HK, J. Electrochem. Soc., 112, 117 (1965)
Austin LG, Almaula S, J. Electrochem. Soc., 114, 927 (1967)
Fritz GB, David JB, J. Electrochem. Soc., 933, 116 (1969)
Went H, Rohland B, Kerntechnik, 56(3), 161 (1991)
Rockett JA, Brown R, J. Electrochem. Soc., 113, 207 (1966)
Srinivasan S, Hurwitz HD, Electrochim. Acta, 12, 495 (1967)
Matsushima T, Enyo M, Electrochim. Acta, 117, 19 (1974)
Cho JY, Kim JH, Kim YW, Kim HJ, Lee JS, HWAHAK KONGHAK, 32(1), 86 (1994)
Cho WI, Cho JY, Kim HJ, HWAHAK KONGHAK, 30(3), 328 (1992)
Cho JY, Kim YW, Kim HJ, Lee JS, HWAHAK KONGHAK, 31(4), 475 (1993)
Freel J, Pieters WJM, Anderson KB, J. Catal., 14, 247 (1969)
Kenjo T, J. Electrochem. Soc., 1583, 132 (1985)
Los P, Rami A, Lasia A, J. Appl. Electrochem., 135, 23 (1993)
Cho JY, Kim YH, Kim HJ, HWAHAK KONGHAK, 31(2), 244 (1993)
Ewe H, Justi E, Schmitt A, Electrochim. Acta, 19, 799 (1974)
Giner J, Hunter C, J. Electrochem. Soc., 116, 1124 (1969)
Niedrach LW, Alford HK, J. Electrochem. Soc., 112, 117 (1965)
Austin LG, Almaula S, J. Electrochem. Soc., 114, 927 (1967)
Fritz GB, David JB, J. Electrochem. Soc., 933, 116 (1969)
Went H, Rohland B, Kerntechnik, 56(3), 161 (1991)
Rockett JA, Brown R, J. Electrochem. Soc., 113, 207 (1966)
Srinivasan S, Hurwitz HD, Electrochim. Acta, 12, 495 (1967)
Matsushima T, Enyo M, Electrochim. Acta, 117, 19 (1974)
Cho JY, Kim JH, Kim YW, Kim HJ, Lee JS, HWAHAK KONGHAK, 32(1), 86 (1994)
Cho WI, Cho JY, Kim HJ, HWAHAK KONGHAK, 30(3), 328 (1992)
Cho JY, Kim YW, Kim HJ, Lee JS, HWAHAK KONGHAK, 31(4), 475 (1993)
Freel J, Pieters WJM, Anderson KB, J. Catal., 14, 247 (1969)
Kenjo T, J. Electrochem. Soc., 1583, 132 (1985)
Los P, Rami A, Lasia A, J. Appl. Electrochem., 135, 23 (1993)
Cho JY, Kim YH, Kim HJ, HWAHAK KONGHAK, 31(2), 244 (1993)
Ewe H, Justi E, Schmitt A, Electrochim. Acta, 19, 799 (1974)
Giner J, Hunter C, J. Electrochem. Soc., 116, 1124 (1969)