Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
메탄올 개질 반응기의 수식모델을 통한 정상상태 및 동특성 모사
Steady-state and Dynamic Simulation of the Methanol-Steam Reformer Based on a Rigorous Two-dimensional Model
HWAHAK KONGHAK, February 1995, 33(1), 9-18(10), NONE
Download PDF
Abstract
수소의 제조원으로서 메탄올-수증기 개질 반응은 매우 중요한 공정이다. 본 연구에서는 능률적인 메탄올 개질 반응기 개발을 위하여 엄밀한 2차원 동적 수식 모델을 확립하고, 선수치 방법을 통하여 수치 모사함으로써 반응기의 정상상태 및 동특성을 규명하였다. 2차원 편미분 방정식의 수치적 풀이에서 선결되어야 할 수치 안전성 및 정확성 확보에 있어, 반지름 및 축 방향의 공간 변수 각각에 대한 미분항의 대략화(approximation)방법을 확립하였다. 또한, 반응기의 설계 및 가동에 있어 주요 변수인 반응기 벽 온도, 공급 온도와 유량, 공급 반응물 농도 등에 대한 반응기 내부의 반응 전환율 및 온도 분포에 대하여 고찰하였다. 모사 결과 반응기 벽 온도와 공급 유량이 반응기 가동 및 수율을 결정하는 가장 중요한 요인으로 드러났다.
The methanol-steam reforming reaction has partly its significance in a way of hydrogen production. In this paper, a set of strictly rigorous two dimensional dynamic models for a non-isothermal methanol-steam reformer system was established and these equations were then solved using the numerical method of lines under a given experimental condition. The finite difference approximation method was separately applied to the radial and axial direction to satisfy the criteria of corresponding numerical stability and accuracy. Mainly studied were the steady-state profiles inside the reactor with the variations of the reactor wall temperature, the feed temperature, the feed flow rate and the methanol concentration it the feed. Also, the transient behaviors from the reactor start-up were investigated to identify the dynamic characteristics. The cumulation results showed that the controling of the wall temperature and the feed rate accounted for the overall reaction yield.
References
Amphlett JC, Evans MJ, Jones RA, Mann RF, Weir RD, Can. J. Chem. Eng., 59, 720 (1981)
Amphlett JC, Evans MJ, Mann RF, Weir RD, Can. J. Chem. Eng., 63, 605 (1985)
Amphlett JC, Mann RF, Weir RD, Can. J. Chem. Eng., 66, 950 (1988)
Fujimoto S, Ishihara H, Tsuruno S, JSME Ronbunshu, 53, 1452 (1987)
Schiesser WE, "DSS/2: Release 4," Lehigh University (1989)
Smith JM, VanNEss HC, "Introduction to Chemical Engineeinrg Thermodynamics," 4th ed., McGraw-Hill (1987)
Dewasch AP, Froment GF, Chem. Eng. Sci., 26, 629 (1971)
Dewasch AP, Froment GF, Chem. Eng. Sci., 27, 567 (1972)
Chen NH, "Process Reactor Design," Chap. 9, Allyn and Bacon (1983)
Metchell AR, Griffiths DF, "The Finite Difference Method in Partial Differential Equations," Chap. 4, John Wiley and Sons (1980)
Amphlett JC, Evans MJ, Mann RF, Weir RD, Can. J. Chem. Eng., 63, 605 (1985)
Amphlett JC, Mann RF, Weir RD, Can. J. Chem. Eng., 66, 950 (1988)
Fujimoto S, Ishihara H, Tsuruno S, JSME Ronbunshu, 53, 1452 (1987)
Schiesser WE, "DSS/2: Release 4," Lehigh University (1989)
Smith JM, VanNEss HC, "Introduction to Chemical Engineeinrg Thermodynamics," 4th ed., McGraw-Hill (1987)
Dewasch AP, Froment GF, Chem. Eng. Sci., 26, 629 (1971)
Dewasch AP, Froment GF, Chem. Eng. Sci., 27, 567 (1972)
Chen NH, "Process Reactor Design," Chap. 9, Allyn and Bacon (1983)
Metchell AR, Griffiths DF, "The Finite Difference Method in Partial Differential Equations," Chap. 4, John Wiley and Sons (1980)