Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
활성탄에 대한 CFC-113의 흡착, 탈착 특성
Adsorption-Desorption Characteristics of CFC-113 on Activated Carbon
HWAHAK KONGHAK, June 1995, 33(3), 301-309(9), NONE
Download PDF
Abstract
활성탄에 대한 CFC-113의 흡착평형량을 여러 온도(298K, 313K, 343K, 373K, 393K)에서 결정하였다. 이 실험결과를 예측하기 위하여 Langmuir평형식을 사용하였으며 그 결과를 수칙해석에 사용하였다. 흡착 파괴실험은 유량, 농도, 온도를 변화시키면서 수행하였다. 물질 전달계수는 흡착 파괴곡선과 constant pattern해를 비교함으로써 구하였다. 탈착실험은 탈착가스의 유량과 온도를 변화시키면서 그 영향을 살펴보았다. 이러한 실험결과를 수치해석하기 위하여, 비평형, 비단열 모델을 사용하였다. 모델에서 물질전달식은 온도에 따라 물질 전달계수가 변하는 선형구동력모델로 나타내어지고, 흡착제와 기상의 열적 평형 가정이 사용되었다.
Adsorption isotherms of CFC-113 on activated carbon were determined at various temperature (298K, 313K, 343K, 373K, 393K). The isotherms were predicted by Langmuir model fairly well and the results were used to simulate the adsorption and desorption experimental data. Fixed bed adsorption experiments were performed, varying flow rate, concentration and temperature. Mass transfer coefficients were estimated comparing constant pattern solution with experimental breakthrough curves. Fixed bed adsorption experiments were made, varying temperature and flow rate. A nonequilibrium, nonadiabatic model was used to simulate experimental data. In the model, mass transfer rate was expressed by linear driving force with mass transfer coefficients varying with temperature and thermal equilibrium between adsorbent and gas phase was used.
References
Kumar R, VanSloun JK, Chem. Eng. Prog., 85, 34 (1989)
Pan CY, Basmadjian D, Chem. Eng. Sci., 26, 45 (1971)
Lee HK, Heerdt ED, Amundson NR, Chem. Eng. J., 3, 241 (1970)
Basmadijian D, Can. J. Chem. Eng., 53, 234 (1975)
Carter JW, AIChE J., 21, 380 (1975)
Kumar R, Dissinger R, Ind. Eng. Chem. Process Des. Dev., 25, 456 (1986)
Schork JM, Fair JR, Ind. Eng. Chem. Res., 27, 457 (1988)
Huang CC, Fair JR, AIChE J., 34, 1861 (1988)
Kodama K, Kaguei S, Wakao N, Can. J. Chem. Eng., 70, 244 (1992)
Lim JG, Chang WC, Lee TJ, Shim JJ, Choi DK, Lee YY, HWAHAK KONGHAK, 32(3), 341 (1994)
Sircar S, Kumar R, Ind. Eng. Chem. Process Des. Dev., 22, 271 (1983)
Garg DG, Ruthven DM, AIChE J., 21, 200 (1975)
Sladek KJ, Gilliland ER, Baddour RF, Ind. Eng. Chem. Fundam., 13, 100 (1974)
Basmadjian D, Ha KD, Proulx DP, Ind. Eng. Chem. Process Des. Dev., 14, 328 (1975)
Ruthven DM, Principles of Adsorption and Adsorption Processes, Wiley, New York (1984)
Pan CY, Basmadjian D, Chem. Eng. Sci., 26, 45 (1971)
Lee HK, Heerdt ED, Amundson NR, Chem. Eng. J., 3, 241 (1970)
Basmadijian D, Can. J. Chem. Eng., 53, 234 (1975)
Carter JW, AIChE J., 21, 380 (1975)
Kumar R, Dissinger R, Ind. Eng. Chem. Process Des. Dev., 25, 456 (1986)
Schork JM, Fair JR, Ind. Eng. Chem. Res., 27, 457 (1988)
Huang CC, Fair JR, AIChE J., 34, 1861 (1988)
Kodama K, Kaguei S, Wakao N, Can. J. Chem. Eng., 70, 244 (1992)
Lim JG, Chang WC, Lee TJ, Shim JJ, Choi DK, Lee YY, HWAHAK KONGHAK, 32(3), 341 (1994)
Sircar S, Kumar R, Ind. Eng. Chem. Process Des. Dev., 22, 271 (1983)
Garg DG, Ruthven DM, AIChE J., 21, 200 (1975)
Sladek KJ, Gilliland ER, Baddour RF, Ind. Eng. Chem. Fundam., 13, 100 (1974)
Basmadjian D, Ha KD, Proulx DP, Ind. Eng. Chem. Process Des. Dev., 14, 328 (1975)
Ruthven DM, Principles of Adsorption and Adsorption Processes, Wiley, New York (1984)