Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
가중 모멘트 법에 의한 축방향 분산 모델의 해석에 관한 연구
A study on the Analysis of Axial Dispersion Model by the Weighted-Moment Method
HWAHAK KONGHAK, June 1995, 33(3), 345-352(8), NONE
Download PDF
Abstract
세라믹 구로 충전시킨 수직 충전층을 흐르는 액상의 역혼합 현상을 두 지점 응답법에 의한 축방향 분산모델을 적용시켜 해석하고 가중 모멘트 법으로 파라미터를 결정하는 방법을 모멘트 법과 비교 검토하였다. 적합도가 높은 모델 파라미터를 결정하기 위하여 응답곡선의 꼬리부분은 지수 붕괴함수로 근사시켰고, 가중 모멘트 법에서는 Laplace 매개변수 s의 범위를 변화시키면서 선형회귀법을 이용하여 모델 파라미터를 결정하였다. 여기서 결정된 모델 파라미터의 적합도는 이 모델 파라미터를 사용하여 산출한 가상응답곡선과 실제 실험에서 얻은 응답곡선을 비교함으로서 검증하였다. 적절한 범위 내의 Laplace매개변수를 사용하였을 경우, 가중 모멘트 법으로 구한 모델 파라미터가 모멘트 법으로 구한 것보다 적합도가 훨씬 높게 나타났다.
The weighted-moment method for the parameter evaluation of the axial dispersion model was investigated with tracer response curves obtained at two points of a liquid phase flowing through a cylindrical vertical column packed with ceramic spheres. The long tail of response curves was approximated by the exponential decay function in order to obtain model parameters of better fitness. The weighted-moment method was performed through the linear regression method applied with different ranges of Laplace Parameter. The fitness of model parameters evaluated by each method was determined by comparing the hypothetical response curve obtained from the evaluated model parameters with the actual response curve obtained experimentally. The weighted-moment method performed with appropriate range of Laplace parameter had provided more reliable model parameters than those obtained from the moment method.
References
Levenspiel O, Smith WK, Chem. Eng. Sci., 6, 227 (1957)
Shah YT, Stiegel GJ, Sharma MM, AIChE J., 24, 367 (1978)
Aris R, Chem. Eng. Sci., 9, 266 (1959)
Ostergaard K, Michelsen ML, Can. J. Chem. Eng., 47, 107 (1969)
Anderssen AS, White ET, Chem. Eng. Sci., 25, 1015 (1970)
Anderssen AS, White ET, Chem. Eng. Sci., 26, 1203 (1971)
Michelsen ML, Ostergaard K, Chem. Eng. Sci., 25, 583 (1970)
Sater VE, LEvenspiel O, Ind. Eng. Chem. Fundam., 5, 86 (1966)
Danckwerts PV, Chem. Eng. Sci., 2, 1 (1953)
Lim IW, Ph.D. Dissertation, Myong Ji University (1986)
Hopkins MJ, Sheppard AJ, Eisenklam P, Chem. Eng. Sci., 24, 1131 (1969)
Oh SC, M.S. Thesis, Soong Sil University (1988)
Mecklenburgh JC, Hartland S, "The Theory of Backmixing," John Wiley & Sons, New York (1975)
Shah YT, Stiegel GJ, Sharma MM, AIChE J., 24, 367 (1978)
Aris R, Chem. Eng. Sci., 9, 266 (1959)
Ostergaard K, Michelsen ML, Can. J. Chem. Eng., 47, 107 (1969)
Anderssen AS, White ET, Chem. Eng. Sci., 25, 1015 (1970)
Anderssen AS, White ET, Chem. Eng. Sci., 26, 1203 (1971)
Michelsen ML, Ostergaard K, Chem. Eng. Sci., 25, 583 (1970)
Sater VE, LEvenspiel O, Ind. Eng. Chem. Fundam., 5, 86 (1966)
Danckwerts PV, Chem. Eng. Sci., 2, 1 (1953)
Lim IW, Ph.D. Dissertation, Myong Ji University (1986)
Hopkins MJ, Sheppard AJ, Eisenklam P, Chem. Eng. Sci., 24, 1131 (1969)
Oh SC, M.S. Thesis, Soong Sil University (1988)
Mecklenburgh JC, Hartland S, "The Theory of Backmixing," John Wiley & Sons, New York (1975)