Articles & Issues
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
수산화인회석에 의한 수용액으로부터 중금속 이온의 제거에 관한 연구
Removal of Heavy-Metal Ions from Aqueous Solution by hydroxyapatite
HWAHAK KONGHAK, June 1995, 33(3), 360-366(7), NONE
Download PDF
Abstract
염화물 혹은 질산염 형태의 납, 구리, 아연 그리고 카드뮴의 중금속 이온의 제거에 대한 연구를 수산화인회석을 이용하여 회분식으로 수행하였다. 중금속 이온에 대한 등온식은 용액의 농도에 관계없이 일정한 양이 제거되는 rectangular형태를 나타내었고, 중금속 이온에 대한 수산화인회석의 선택도는 양이온의 반경과 전기음성도에 의해 설명이 가능하였다. 회분식 교반 반응기에서 수산화인회석 내부에서의 염화제 2구리, 염화아연 그리고 염화카드뮴의 유효 세공 확산 계수는 각각2.88-10m2/s, 2.77X10-10m2/s 그리고 2.95X10-10m2/s이었다. 또한 납 이온은 수산화인회석에 의해 아주 빨리 그리고 ㅅ게 제거가 가능하였다.
Removal of divalent heavy metal ions, i.e., Pb2+, Cu2+, Zn2+and Cd2+, respectively, from their chloride or nitrate aqueous solutions was studied by the addition of hydroxyapatite in a batch system. The isotherms for heavy metal ions were of the rectangular type so that the amounts removed from aqueous phase were constant irrespective of the concentration of solutions. The selectivity for the cations on hydroxyapatite can be explained in terms of the ionic radii and the its electronegativities. Kinetic experiments were carried out in an agitated tank adsorber. Effective diffusivities of cupric chloride, zinc chloride and cadmium chloride inside hydroxyapatite were 2.88×10-10m2/s, 2.77×10-10m2/s and 2.95×10-10m2/s, respectively, Pb2+ was also exchanged very quickly with Ca2+ and easily removed by hydoxyapatite.
References
Kojima T, Miyauchi T, Ind. Eng. Chem. Fundam., 20, 14 (1981)
Komasawa I, Maekawa Y, Otake T, J. Chem. Eng. Jpn., 20, 41 (1987)
Chaudry MA, Malik MT, Ali A, Sep. Sci. Technol., 25, 1161 (1990)
Nakashio F, J. Chem. Eng. Jpn., 26, 123 (1993)
Moreno EC, Gregory TM, Brown WE, J. Res. Natl. Bur. Stand. Sect. A, 72, 773 (1968)
Avnimelech Y, Moreno EC, Brown WE, J. Res. Natl. Bur. Stand. Sect. A, 77, 149 (1973)
McDowell H, Gregory TM, Brown WE, J. Res. Natl. Bur. Stand. Sect. A, 81, 273 (1977)
Hlady V, Milhofer HF, J. Colloid Interface Sci., 69, 460 (1979)
Kawasaki T, Biopolymer, 9, 277 (1970)
Suzuki T, Hatsushika T, Miyake M, J. Chem. Soc.-Faraday Trans., 77, 1059 (1981)
Suzuki T, Hatsushika T, Miyake M, J. Chem. Soc.-Faraday Trans., 78, 3605 (1982)
Takeuchi Y, Suzuki T, Arai H, J. Chem. Eng. Jpn., 21, 98 (1988)
Takeuchi Y, Arai H, J. Chem. Eng. Jpn., 23, 75 (1990)
Yagi S, Kunii D, Chem. Eng., 19, 500 (1955)
Kay MI, Young RA, Posner AS, Nature, 204, 1050 (1964)
Shannon RD, Prewitt CT, Acta Crystallogr. Sect. B-Struct. Sci., 25, 925 (1969)
Allred AL, J. Inorg. Nucl. Chem., 17, 215 (1961)
Komasawa I, Maekawa Y, Otake T, J. Chem. Eng. Jpn., 20, 41 (1987)
Chaudry MA, Malik MT, Ali A, Sep. Sci. Technol., 25, 1161 (1990)
Nakashio F, J. Chem. Eng. Jpn., 26, 123 (1993)
Moreno EC, Gregory TM, Brown WE, J. Res. Natl. Bur. Stand. Sect. A, 72, 773 (1968)
Avnimelech Y, Moreno EC, Brown WE, J. Res. Natl. Bur. Stand. Sect. A, 77, 149 (1973)
McDowell H, Gregory TM, Brown WE, J. Res. Natl. Bur. Stand. Sect. A, 81, 273 (1977)
Hlady V, Milhofer HF, J. Colloid Interface Sci., 69, 460 (1979)
Kawasaki T, Biopolymer, 9, 277 (1970)
Suzuki T, Hatsushika T, Miyake M, J. Chem. Soc.-Faraday Trans., 77, 1059 (1981)
Suzuki T, Hatsushika T, Miyake M, J. Chem. Soc.-Faraday Trans., 78, 3605 (1982)
Takeuchi Y, Suzuki T, Arai H, J. Chem. Eng. Jpn., 21, 98 (1988)
Takeuchi Y, Arai H, J. Chem. Eng. Jpn., 23, 75 (1990)
Yagi S, Kunii D, Chem. Eng., 19, 500 (1955)
Kay MI, Young RA, Posner AS, Nature, 204, 1050 (1964)
Shannon RD, Prewitt CT, Acta Crystallogr. Sect. B-Struct. Sci., 25, 925 (1969)
Allred AL, J. Inorg. Nucl. Chem., 17, 215 (1961)